On the solution of the extended linear complementarity problem

Detalhes bibliográficos
Autor(a) principal: Andreani, R.
Data de Publicação: 1998
Outros Autores: Martinez, J. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/S0024-3795(98)10041-1
http://hdl.handle.net/11449/31969
Resumo: The extended linear complementarity problem (XLCP) has been introduced in a recent paper by Mangasarian and Pang. In the present research, minimization problems with simple bounds associated to this problem are defined. When the XLCP is solvable, their solutions are global minimizers of the associated problems. Sufficient conditions that guarantee that stationary points of the associated problems are solutions of the XLCP will be proved. These theoretical results support the conjecture that local methods for box constrained optimization applied to the associated problems could be efficient tools for solving the XLCP. (C) 1998 Elsevier B.V. All rights reserved.
id UNSP_0c722a6ba4390a75b7d7b6c4d97a1747
oai_identifier_str oai:repositorio.unesp.br:11449/31969
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the solution of the extended linear complementarity problemcomplementaritybox constrained minimizationThe extended linear complementarity problem (XLCP) has been introduced in a recent paper by Mangasarian and Pang. In the present research, minimization problems with simple bounds associated to this problem are defined. When the XLCP is solvable, their solutions are global minimizers of the associated problems. Sufficient conditions that guarantee that stationary points of the associated problems are solutions of the XLCP will be proved. These theoretical results support the conjecture that local methods for box constrained optimization applied to the associated problems could be efficient tools for solving the XLCP. (C) 1998 Elsevier B.V. All rights reserved.Univ Estadual Campinas, IMECC, Dept Math, BR-13081970 Campinas, SP, BrazilUNESP, Dept Comp Sci & Stat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUNESP, Dept Comp Sci & Stat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Andreani, R.Martinez, J. M.2014-05-20T15:20:44Z2014-05-20T15:20:44Z1998-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article247-257application/pdfhttp://dx.doi.org/10.1016/S0024-3795(98)10041-1Linear Algebra and Its Applications. New York: Elsevier B.V., v. 281, n. 1-3, p. 247-257, 1998.0024-3795http://hdl.handle.net/11449/3196910.1016/S0024-3795(98)10041-1WOS:000076000900013WOS000076000900013.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLinear Algebra and Its Applications0.9720,994info:eu-repo/semantics/openAccess2024-01-23T07:13:36Zoai:repositorio.unesp.br:11449/31969Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:48:31.290076Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the solution of the extended linear complementarity problem
title On the solution of the extended linear complementarity problem
spellingShingle On the solution of the extended linear complementarity problem
Andreani, R.
complementarity
box constrained minimization
title_short On the solution of the extended linear complementarity problem
title_full On the solution of the extended linear complementarity problem
title_fullStr On the solution of the extended linear complementarity problem
title_full_unstemmed On the solution of the extended linear complementarity problem
title_sort On the solution of the extended linear complementarity problem
author Andreani, R.
author_facet Andreani, R.
Martinez, J. M.
author_role author
author2 Martinez, J. M.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Andreani, R.
Martinez, J. M.
dc.subject.por.fl_str_mv complementarity
box constrained minimization
topic complementarity
box constrained minimization
description The extended linear complementarity problem (XLCP) has been introduced in a recent paper by Mangasarian and Pang. In the present research, minimization problems with simple bounds associated to this problem are defined. When the XLCP is solvable, their solutions are global minimizers of the associated problems. Sufficient conditions that guarantee that stationary points of the associated problems are solutions of the XLCP will be proved. These theoretical results support the conjecture that local methods for box constrained optimization applied to the associated problems could be efficient tools for solving the XLCP. (C) 1998 Elsevier B.V. All rights reserved.
publishDate 1998
dc.date.none.fl_str_mv 1998-09-15
2014-05-20T15:20:44Z
2014-05-20T15:20:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/S0024-3795(98)10041-1
Linear Algebra and Its Applications. New York: Elsevier B.V., v. 281, n. 1-3, p. 247-257, 1998.
0024-3795
http://hdl.handle.net/11449/31969
10.1016/S0024-3795(98)10041-1
WOS:000076000900013
WOS000076000900013.pdf
url http://dx.doi.org/10.1016/S0024-3795(98)10041-1
http://hdl.handle.net/11449/31969
identifier_str_mv Linear Algebra and Its Applications. New York: Elsevier B.V., v. 281, n. 1-3, p. 247-257, 1998.
0024-3795
10.1016/S0024-3795(98)10041-1
WOS:000076000900013
WOS000076000900013.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Linear Algebra and Its Applications
0.972
0,994
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 247-257
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129554003263488