Solutions of mixed Painlevé P III—V model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.1088/1751-8121/aaecdd |
Texto Completo: | http://dx.doi.org/10.1088/1751-8121/aaecdd http://hdl.handle.net/11449/188757 |
Resumo: | We review the construction of the mixed Painlevé P III –V system in terms of a 4-boson integrable model and discuss its symmetries. Such a mixed system consist of a hybrid differential equation that for special limits of its parameters reduces to either Painlevé P III or P V . The aim of this paper is to describe solutions of the P III – V model. In particular, we determine and classify rational, power series and transcendental solutions of the P III – V model. A class of power series solutions is shown to be convergent in accordance with the Briot–Bouquet theorem. Moreover, the P III – V equations are reduced to Riccati equations and solved for special values of parameters. The corresponding Riccati solutions can be expressed as Whittaker functions or alternatively confluent hypergeometric and Laguerre functions and are given by ratios of polynomials of order n when the parameter of a P III – V equation is quantized by integer n ∈ Z. |
id |
UNSP_0e22aeeabb0ed80fe71fbcabf3cae0f1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/188757 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Solutions of mixed Painlevé P III—V modelIntegrable modelsPainlevé equationsSelf-similarityWe review the construction of the mixed Painlevé P III –V system in terms of a 4-boson integrable model and discuss its symmetries. Such a mixed system consist of a hybrid differential equation that for special limits of its parameters reduces to either Painlevé P III or P V . The aim of this paper is to describe solutions of the P III – V model. In particular, we determine and classify rational, power series and transcendental solutions of the P III – V model. A class of power series solutions is shown to be convergent in accordance with the Briot–Bouquet theorem. Moreover, the P III – V equations are reduced to Riccati equations and solved for special values of parameters. The corresponding Riccati solutions can be expressed as Whittaker functions or alternatively confluent hypergeometric and Laguerre functions and are given by ratios of polynomials of order n when the parameter of a P III – V equation is quantized by integer n ∈ Z.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Instituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco IIDepartment of Physics University of Illinois at Chicago, 845W. Taylor St.Instituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco IIFAPESP: 2016/22122-9Universidade Estadual Paulista (Unesp)University of Illinois at ChicagoAlves, V. C.C. [UNESP]Aratyn, H.Gomes, J. F. [UNESP]Zimerman, A. H. [UNESP]2019-10-06T16:18:14Z2019-10-06T16:18:14Z2019-01-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1751-8121/aaecddJournal of Physics A: Mathematical and Theoretical, v. 52, n. 6, 2019.1751-81211751-8113http://hdl.handle.net/11449/18875710.1088/1751-8121/aaecdd2-s2.0-85061893632Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physics A: Mathematical and Theoreticalinfo:eu-repo/semantics/openAccess2021-10-22T21:15:51Zoai:repositorio.unesp.br:11449/188757Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:10:38.143833Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Solutions of mixed Painlevé P III—V model |
title |
Solutions of mixed Painlevé P III—V model |
spellingShingle |
Solutions of mixed Painlevé P III—V model Solutions of mixed Painlevé P III—V model Alves, V. C.C. [UNESP] Integrable models Painlevé equations Self-similarity Alves, V. C.C. [UNESP] Integrable models Painlevé equations Self-similarity |
title_short |
Solutions of mixed Painlevé P III—V model |
title_full |
Solutions of mixed Painlevé P III—V model |
title_fullStr |
Solutions of mixed Painlevé P III—V model Solutions of mixed Painlevé P III—V model |
title_full_unstemmed |
Solutions of mixed Painlevé P III—V model Solutions of mixed Painlevé P III—V model |
title_sort |
Solutions of mixed Painlevé P III—V model |
author |
Alves, V. C.C. [UNESP] |
author_facet |
Alves, V. C.C. [UNESP] Alves, V. C.C. [UNESP] Aratyn, H. Gomes, J. F. [UNESP] Zimerman, A. H. [UNESP] Aratyn, H. Gomes, J. F. [UNESP] Zimerman, A. H. [UNESP] |
author_role |
author |
author2 |
Aratyn, H. Gomes, J. F. [UNESP] Zimerman, A. H. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) University of Illinois at Chicago |
dc.contributor.author.fl_str_mv |
Alves, V. C.C. [UNESP] Aratyn, H. Gomes, J. F. [UNESP] Zimerman, A. H. [UNESP] |
dc.subject.por.fl_str_mv |
Integrable models Painlevé equations Self-similarity |
topic |
Integrable models Painlevé equations Self-similarity |
description |
We review the construction of the mixed Painlevé P III –V system in terms of a 4-boson integrable model and discuss its symmetries. Such a mixed system consist of a hybrid differential equation that for special limits of its parameters reduces to either Painlevé P III or P V . The aim of this paper is to describe solutions of the P III – V model. In particular, we determine and classify rational, power series and transcendental solutions of the P III – V model. A class of power series solutions is shown to be convergent in accordance with the Briot–Bouquet theorem. Moreover, the P III – V equations are reduced to Riccati equations and solved for special values of parameters. The corresponding Riccati solutions can be expressed as Whittaker functions or alternatively confluent hypergeometric and Laguerre functions and are given by ratios of polynomials of order n when the parameter of a P III – V equation is quantized by integer n ∈ Z. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T16:18:14Z 2019-10-06T16:18:14Z 2019-01-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/1751-8121/aaecdd Journal of Physics A: Mathematical and Theoretical, v. 52, n. 6, 2019. 1751-8121 1751-8113 http://hdl.handle.net/11449/188757 10.1088/1751-8121/aaecdd 2-s2.0-85061893632 |
url |
http://dx.doi.org/10.1088/1751-8121/aaecdd http://hdl.handle.net/11449/188757 |
identifier_str_mv |
Journal of Physics A: Mathematical and Theoretical, v. 52, n. 6, 2019. 1751-8121 1751-8113 10.1088/1751-8121/aaecdd 2-s2.0-85061893632 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Physics A: Mathematical and Theoretical |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822230945357365248 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1751-8121/aaecdd |