Solutions of mixed Painlevé P III—V model

Detalhes bibliográficos
Autor(a) principal: Alves, V. C.C. [UNESP]
Data de Publicação: 2019
Outros Autores: Aratyn, H., Gomes, J. F. [UNESP], Zimerman, A. H. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
DOI: 10.1088/1751-8121/aaecdd
Texto Completo: http://dx.doi.org/10.1088/1751-8121/aaecdd
http://hdl.handle.net/11449/188757
Resumo: We review the construction of the mixed Painlevé P III –V system in terms of a 4-boson integrable model and discuss its symmetries. Such a mixed system consist of a hybrid differential equation that for special limits of its parameters reduces to either Painlevé P III or P V . The aim of this paper is to describe solutions of the P III – V model. In particular, we determine and classify rational, power series and transcendental solutions of the P III – V model. A class of power series solutions is shown to be convergent in accordance with the Briot–Bouquet theorem. Moreover, the P III – V equations are reduced to Riccati equations and solved for special values of parameters. The corresponding Riccati solutions can be expressed as Whittaker functions or alternatively confluent hypergeometric and Laguerre functions and are given by ratios of polynomials of order n when the parameter of a P III – V equation is quantized by integer n ∈ Z.
id UNSP_0e22aeeabb0ed80fe71fbcabf3cae0f1
oai_identifier_str oai:repositorio.unesp.br:11449/188757
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Solutions of mixed Painlevé P III—V modelIntegrable modelsPainlevé equationsSelf-similarityWe review the construction of the mixed Painlevé P III –V system in terms of a 4-boson integrable model and discuss its symmetries. Such a mixed system consist of a hybrid differential equation that for special limits of its parameters reduces to either Painlevé P III or P V . The aim of this paper is to describe solutions of the P III – V model. In particular, we determine and classify rational, power series and transcendental solutions of the P III – V model. A class of power series solutions is shown to be convergent in accordance with the Briot–Bouquet theorem. Moreover, the P III – V equations are reduced to Riccati equations and solved for special values of parameters. The corresponding Riccati solutions can be expressed as Whittaker functions or alternatively confluent hypergeometric and Laguerre functions and are given by ratios of polynomials of order n when the parameter of a P III – V equation is quantized by integer n ∈ Z.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Instituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco IIDepartment of Physics University of Illinois at Chicago, 845W. Taylor St.Instituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco IIFAPESP: 2016/22122-9Universidade Estadual Paulista (Unesp)University of Illinois at ChicagoAlves, V. C.C. [UNESP]Aratyn, H.Gomes, J. F. [UNESP]Zimerman, A. H. [UNESP]2019-10-06T16:18:14Z2019-10-06T16:18:14Z2019-01-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1751-8121/aaecddJournal of Physics A: Mathematical and Theoretical, v. 52, n. 6, 2019.1751-81211751-8113http://hdl.handle.net/11449/18875710.1088/1751-8121/aaecdd2-s2.0-85061893632Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physics A: Mathematical and Theoreticalinfo:eu-repo/semantics/openAccess2021-10-22T21:15:51Zoai:repositorio.unesp.br:11449/188757Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:10:38.143833Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Solutions of mixed Painlevé P III—V model
title Solutions of mixed Painlevé P III—V model
spellingShingle Solutions of mixed Painlevé P III—V model
Solutions of mixed Painlevé P III—V model
Alves, V. C.C. [UNESP]
Integrable models
Painlevé equations
Self-similarity
Alves, V. C.C. [UNESP]
Integrable models
Painlevé equations
Self-similarity
title_short Solutions of mixed Painlevé P III—V model
title_full Solutions of mixed Painlevé P III—V model
title_fullStr Solutions of mixed Painlevé P III—V model
Solutions of mixed Painlevé P III—V model
title_full_unstemmed Solutions of mixed Painlevé P III—V model
Solutions of mixed Painlevé P III—V model
title_sort Solutions of mixed Painlevé P III—V model
author Alves, V. C.C. [UNESP]
author_facet Alves, V. C.C. [UNESP]
Alves, V. C.C. [UNESP]
Aratyn, H.
Gomes, J. F. [UNESP]
Zimerman, A. H. [UNESP]
Aratyn, H.
Gomes, J. F. [UNESP]
Zimerman, A. H. [UNESP]
author_role author
author2 Aratyn, H.
Gomes, J. F. [UNESP]
Zimerman, A. H. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
University of Illinois at Chicago
dc.contributor.author.fl_str_mv Alves, V. C.C. [UNESP]
Aratyn, H.
Gomes, J. F. [UNESP]
Zimerman, A. H. [UNESP]
dc.subject.por.fl_str_mv Integrable models
Painlevé equations
Self-similarity
topic Integrable models
Painlevé equations
Self-similarity
description We review the construction of the mixed Painlevé P III –V system in terms of a 4-boson integrable model and discuss its symmetries. Such a mixed system consist of a hybrid differential equation that for special limits of its parameters reduces to either Painlevé P III or P V . The aim of this paper is to describe solutions of the P III – V model. In particular, we determine and classify rational, power series and transcendental solutions of the P III – V model. A class of power series solutions is shown to be convergent in accordance with the Briot–Bouquet theorem. Moreover, the P III – V equations are reduced to Riccati equations and solved for special values of parameters. The corresponding Riccati solutions can be expressed as Whittaker functions or alternatively confluent hypergeometric and Laguerre functions and are given by ratios of polynomials of order n when the parameter of a P III – V equation is quantized by integer n ∈ Z.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T16:18:14Z
2019-10-06T16:18:14Z
2019-01-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1751-8121/aaecdd
Journal of Physics A: Mathematical and Theoretical, v. 52, n. 6, 2019.
1751-8121
1751-8113
http://hdl.handle.net/11449/188757
10.1088/1751-8121/aaecdd
2-s2.0-85061893632
url http://dx.doi.org/10.1088/1751-8121/aaecdd
http://hdl.handle.net/11449/188757
identifier_str_mv Journal of Physics A: Mathematical and Theoretical, v. 52, n. 6, 2019.
1751-8121
1751-8113
10.1088/1751-8121/aaecdd
2-s2.0-85061893632
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Physics A: Mathematical and Theoretical
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1822230945357365248
dc.identifier.doi.none.fl_str_mv 10.1088/1751-8121/aaecdd