Learning Parameters in Deep Belief Networks Through Firefly Algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-46182-3_12 http://hdl.handle.net/11449/159240 |
Resumo: | Restricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets. |
id |
UNSP_0f3922263a976e2ed2d23d88f308173b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/159240 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Learning Parameters in Deep Belief Networks Through Firefly AlgorithmDeep Belief NetworksDeep learningFirefly algorithmRestricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets.Sao Paulo State Univ, Dept Comp, Sao Paulo, BrazilUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilMiddlesex Univ, Sch Sci & Technol, London, EnglandSao Paulo State Univ, Dept Comp, Sao Paulo, BrazilSpringerUniversidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Middlesex UnivRosa, Gustavo [UNESP]Papa, Joao [UNESP]Costa, Kelton [UNESP]Passos, LeandroPereira, ClaytonYang, Xin-SheSchwenker, F.Abbas, H. M.ElGayar, N.Trentin, E.2018-11-26T15:37:35Z2018-11-26T15:37:35Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject138-149application/pdfhttp://dx.doi.org/10.1007/978-3-319-46182-3_12Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016.0302-9743http://hdl.handle.net/11449/15924010.1007/978-3-319-46182-3_12WOS:000389727700012WOS000389727700012.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengArtificial Neural Networks In Pattern Recognition0,295info:eu-repo/semantics/openAccess2023-10-21T06:09:26Zoai:repositorio.unesp.br:11449/159240Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:32:50.772961Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm |
title |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm |
spellingShingle |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm Rosa, Gustavo [UNESP] Deep Belief Networks Deep learning Firefly algorithm |
title_short |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm |
title_full |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm |
title_fullStr |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm |
title_full_unstemmed |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm |
title_sort |
Learning Parameters in Deep Belief Networks Through Firefly Algorithm |
author |
Rosa, Gustavo [UNESP] |
author_facet |
Rosa, Gustavo [UNESP] Papa, Joao [UNESP] Costa, Kelton [UNESP] Passos, Leandro Pereira, Clayton Yang, Xin-She Schwenker, F. Abbas, H. M. ElGayar, N. Trentin, E. |
author_role |
author |
author2 |
Papa, Joao [UNESP] Costa, Kelton [UNESP] Passos, Leandro Pereira, Clayton Yang, Xin-She Schwenker, F. Abbas, H. M. ElGayar, N. Trentin, E. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Carlos (UFSCar) Middlesex Univ |
dc.contributor.author.fl_str_mv |
Rosa, Gustavo [UNESP] Papa, Joao [UNESP] Costa, Kelton [UNESP] Passos, Leandro Pereira, Clayton Yang, Xin-She Schwenker, F. Abbas, H. M. ElGayar, N. Trentin, E. |
dc.subject.por.fl_str_mv |
Deep Belief Networks Deep learning Firefly algorithm |
topic |
Deep Belief Networks Deep learning Firefly algorithm |
description |
Restricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-11-26T15:37:35Z 2018-11-26T15:37:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-46182-3_12 Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016. 0302-9743 http://hdl.handle.net/11449/159240 10.1007/978-3-319-46182-3_12 WOS:000389727700012 WOS000389727700012.pdf |
url |
http://dx.doi.org/10.1007/978-3-319-46182-3_12 http://hdl.handle.net/11449/159240 |
identifier_str_mv |
Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016. 0302-9743 10.1007/978-3-319-46182-3_12 WOS:000389727700012 WOS000389727700012.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Artificial Neural Networks In Pattern Recognition 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
138-149 application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128529864327168 |