Learning Parameters in Deep Belief Networks Through Firefly Algorithm

Detalhes bibliográficos
Autor(a) principal: Rosa, Gustavo [UNESP]
Data de Publicação: 2016
Outros Autores: Papa, Joao [UNESP], Costa, Kelton [UNESP], Passos, Leandro, Pereira, Clayton, Yang, Xin-She, Schwenker, F., Abbas, H. M., ElGayar, N., Trentin, E.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-46182-3_12
http://hdl.handle.net/11449/159240
Resumo: Restricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets.
id UNSP_0f3922263a976e2ed2d23d88f308173b
oai_identifier_str oai:repositorio.unesp.br:11449/159240
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Learning Parameters in Deep Belief Networks Through Firefly AlgorithmDeep Belief NetworksDeep learningFirefly algorithmRestricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets.Sao Paulo State Univ, Dept Comp, Sao Paulo, BrazilUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilMiddlesex Univ, Sch Sci & Technol, London, EnglandSao Paulo State Univ, Dept Comp, Sao Paulo, BrazilSpringerUniversidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Middlesex UnivRosa, Gustavo [UNESP]Papa, Joao [UNESP]Costa, Kelton [UNESP]Passos, LeandroPereira, ClaytonYang, Xin-SheSchwenker, F.Abbas, H. M.ElGayar, N.Trentin, E.2018-11-26T15:37:35Z2018-11-26T15:37:35Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject138-149application/pdfhttp://dx.doi.org/10.1007/978-3-319-46182-3_12Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016.0302-9743http://hdl.handle.net/11449/15924010.1007/978-3-319-46182-3_12WOS:000389727700012WOS000389727700012.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengArtificial Neural Networks In Pattern Recognition0,295info:eu-repo/semantics/openAccess2023-10-21T06:09:26Zoai:repositorio.unesp.br:11449/159240Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:32:50.772961Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Learning Parameters in Deep Belief Networks Through Firefly Algorithm
title Learning Parameters in Deep Belief Networks Through Firefly Algorithm
spellingShingle Learning Parameters in Deep Belief Networks Through Firefly Algorithm
Rosa, Gustavo [UNESP]
Deep Belief Networks
Deep learning
Firefly algorithm
title_short Learning Parameters in Deep Belief Networks Through Firefly Algorithm
title_full Learning Parameters in Deep Belief Networks Through Firefly Algorithm
title_fullStr Learning Parameters in Deep Belief Networks Through Firefly Algorithm
title_full_unstemmed Learning Parameters in Deep Belief Networks Through Firefly Algorithm
title_sort Learning Parameters in Deep Belief Networks Through Firefly Algorithm
author Rosa, Gustavo [UNESP]
author_facet Rosa, Gustavo [UNESP]
Papa, Joao [UNESP]
Costa, Kelton [UNESP]
Passos, Leandro
Pereira, Clayton
Yang, Xin-She
Schwenker, F.
Abbas, H. M.
ElGayar, N.
Trentin, E.
author_role author
author2 Papa, Joao [UNESP]
Costa, Kelton [UNESP]
Passos, Leandro
Pereira, Clayton
Yang, Xin-She
Schwenker, F.
Abbas, H. M.
ElGayar, N.
Trentin, E.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
Middlesex Univ
dc.contributor.author.fl_str_mv Rosa, Gustavo [UNESP]
Papa, Joao [UNESP]
Costa, Kelton [UNESP]
Passos, Leandro
Pereira, Clayton
Yang, Xin-She
Schwenker, F.
Abbas, H. M.
ElGayar, N.
Trentin, E.
dc.subject.por.fl_str_mv Deep Belief Networks
Deep learning
Firefly algorithm
topic Deep Belief Networks
Deep learning
Firefly algorithm
description Restricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-11-26T15:37:35Z
2018-11-26T15:37:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-46182-3_12
Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016.
0302-9743
http://hdl.handle.net/11449/159240
10.1007/978-3-319-46182-3_12
WOS:000389727700012
WOS000389727700012.pdf
url http://dx.doi.org/10.1007/978-3-319-46182-3_12
http://hdl.handle.net/11449/159240
identifier_str_mv Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016.
0302-9743
10.1007/978-3-319-46182-3_12
WOS:000389727700012
WOS000389727700012.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Artificial Neural Networks In Pattern Recognition
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 138-149
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128529864327168