Statistical approaches for the optimization of parameters for biotechnological production of xylitol
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-642-31887-0_6 http://hdl.handle.net/11449/232403 |
Resumo: | Statistics is a fundamental tool in the analysis of any process data where there is variability. There are many ways to approach the problem of optimization and design of a process, which can be handled quickly using a number of statistical techniques. Statistical design of experiments is a mechanism of data collection appropriate to study the biotechnological process, like xylitol production. Several fermentation processes have been optimized using response surface methodology. However, one of the major problems to the researcher is identifying the independent variables that influence the study in order to explain the model which best represents the process. The upstream independent variables studied in the statistical design for fermentation processes are aeration rate, temperature, phosphate level, back pressure, carbon source, pH, power input, agitation rate, carbon/nitrogen ratio, nitrogen source and dissolved oxygen level. The statistical approach for biotechnological production of xylitol from lignocellulosic materials also could be helpful to optimize pretreatment of lignocellulosic biomass, conditioning of hemicellulosic hydrolysates and xylitol recovery from fermented hydrolysates. This chapter will provide an overview on the state of knowledge in these areas focus on statistical approaches. |
id |
UNSP_109ffcbb4173bca5a571330ef45f7b18 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/232403 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Statistical approaches for the optimization of parameters for biotechnological production of xylitolLignocellulosic materialsOptimizationStatistical approachesXylitol bio-productionStatistics is a fundamental tool in the analysis of any process data where there is variability. There are many ways to approach the problem of optimization and design of a process, which can be handled quickly using a number of statistical techniques. Statistical design of experiments is a mechanism of data collection appropriate to study the biotechnological process, like xylitol production. Several fermentation processes have been optimized using response surface methodology. However, one of the major problems to the researcher is identifying the independent variables that influence the study in order to explain the model which best represents the process. The upstream independent variables studied in the statistical design for fermentation processes are aeration rate, temperature, phosphate level, back pressure, carbon source, pH, power input, agitation rate, carbon/nitrogen ratio, nitrogen source and dissolved oxygen level. The statistical approach for biotechnological production of xylitol from lignocellulosic materials also could be helpful to optimize pretreatment of lignocellulosic biomass, conditioning of hemicellulosic hydrolysates and xylitol recovery from fermented hydrolysates. This chapter will provide an overview on the state of knowledge in these areas focus on statistical approaches.Biotechnology Department, EEL-Engineering School of Lorena, São Paulo University, P.O. Box 116Energy Department, São Paulo State University-UNESP, P.O. Box 116Department of Technology, Engineering College of Food, UEFS- State University of Feira de Santana, P.O. Box 252Department of Chemical Engineering, ICIDCA-Cuban Institute for Research on Sugarcane Derivatives, P.O. Box 4026Energy Department, São Paulo State University-UNESP, P.O. Box 116Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)De Cassia Lacerda Brambilla, RitaCanettieri, Eliana Vieira [UNESP]Martinez, Ernesto AcostaCanilha, LarissaSolenzal, Ana Irene NapolezDe Almeida E Silva, João Batista2022-04-29T15:03:57Z2022-04-29T15:03:57Z2012-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart133-160http://dx.doi.org/10.1007/978-3-642-31887-0_6D-Xylitol: Fermentative Production, Application and Commercialization, p. 133-160.http://hdl.handle.net/11449/23240310.1007/978-3-642-31887-0_62-s2.0-84929044558Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengD-Xylitol: Fermentative Production, Application and Commercializationinfo:eu-repo/semantics/openAccess2024-07-01T19:30:12Zoai:repositorio.unesp.br:11449/232403Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:58:08.427425Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol |
title |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol |
spellingShingle |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol De Cassia Lacerda Brambilla, Rita Lignocellulosic materials Optimization Statistical approaches Xylitol bio-production |
title_short |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol |
title_full |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol |
title_fullStr |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol |
title_full_unstemmed |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol |
title_sort |
Statistical approaches for the optimization of parameters for biotechnological production of xylitol |
author |
De Cassia Lacerda Brambilla, Rita |
author_facet |
De Cassia Lacerda Brambilla, Rita Canettieri, Eliana Vieira [UNESP] Martinez, Ernesto Acosta Canilha, Larissa Solenzal, Ana Irene Napolez De Almeida E Silva, João Batista |
author_role |
author |
author2 |
Canettieri, Eliana Vieira [UNESP] Martinez, Ernesto Acosta Canilha, Larissa Solenzal, Ana Irene Napolez De Almeida E Silva, João Batista |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
De Cassia Lacerda Brambilla, Rita Canettieri, Eliana Vieira [UNESP] Martinez, Ernesto Acosta Canilha, Larissa Solenzal, Ana Irene Napolez De Almeida E Silva, João Batista |
dc.subject.por.fl_str_mv |
Lignocellulosic materials Optimization Statistical approaches Xylitol bio-production |
topic |
Lignocellulosic materials Optimization Statistical approaches Xylitol bio-production |
description |
Statistics is a fundamental tool in the analysis of any process data where there is variability. There are many ways to approach the problem of optimization and design of a process, which can be handled quickly using a number of statistical techniques. Statistical design of experiments is a mechanism of data collection appropriate to study the biotechnological process, like xylitol production. Several fermentation processes have been optimized using response surface methodology. However, one of the major problems to the researcher is identifying the independent variables that influence the study in order to explain the model which best represents the process. The upstream independent variables studied in the statistical design for fermentation processes are aeration rate, temperature, phosphate level, back pressure, carbon source, pH, power input, agitation rate, carbon/nitrogen ratio, nitrogen source and dissolved oxygen level. The statistical approach for biotechnological production of xylitol from lignocellulosic materials also could be helpful to optimize pretreatment of lignocellulosic biomass, conditioning of hemicellulosic hydrolysates and xylitol recovery from fermented hydrolysates. This chapter will provide an overview on the state of knowledge in these areas focus on statistical approaches. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01 2022-04-29T15:03:57Z 2022-04-29T15:03:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-642-31887-0_6 D-Xylitol: Fermentative Production, Application and Commercialization, p. 133-160. http://hdl.handle.net/11449/232403 10.1007/978-3-642-31887-0_6 2-s2.0-84929044558 |
url |
http://dx.doi.org/10.1007/978-3-642-31887-0_6 http://hdl.handle.net/11449/232403 |
identifier_str_mv |
D-Xylitol: Fermentative Production, Application and Commercialization, p. 133-160. 10.1007/978-3-642-31887-0_6 2-s2.0-84929044558 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
D-Xylitol: Fermentative Production, Application and Commercialization |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
133-160 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129144671698944 |