Multi-relational algorithm for mining association rules in large databases
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PDCAT.2011.56 http://hdl.handle.net/11449/72859 |
Resumo: | Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE. |
id |
UNSP_124d2b07461ab2a8a051ea30d6f91941 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72859 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Multi-relational algorithm for mining association rules in large databasesAssociation rulesFrequent itemsets miningMulti-relational data miningRelational databaseItem setsLarge databaseMemory usageMining associationsMultirelational data miningPattern miningRelational DatabaseAlgorithmsData miningDatabase systemsMulti-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.Depto. de Ciências de Computação e Estatística Universidade Estadual Paulista - Unesp, São José do Rio PretoDepto. de Ciências de Computação e Estatística Universidade Estadual Paulista - Unesp, São José do Rio PretoUniversidade Estadual Paulista (Unesp)Valêncio, Carlos Roberto [UNESP]Oyama, Fernando Takeshi [UNESP]Ichiba, Fernando Tochio [UNESP]De Souza, Rogéria Cristiane Gratão [UNESP]2014-05-27T11:26:14Z2014-05-27T11:26:14Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject269-274http://dx.doi.org/10.1109/PDCAT.2011.56Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 269-274.http://hdl.handle.net/11449/7285910.1109/PDCAT.2011.562-s2.0-84856658056464481225387583259146517545178640000-0002-9325-31590000-0002-7449-9022Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengParallel and Distributed Computing, Applications and Technologies, PDCAT Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T10:11:03Zoai:repositorio.unesp.br:11449/72859Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:27:52.249263Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Multi-relational algorithm for mining association rules in large databases |
title |
Multi-relational algorithm for mining association rules in large databases |
spellingShingle |
Multi-relational algorithm for mining association rules in large databases Valêncio, Carlos Roberto [UNESP] Association rules Frequent itemsets mining Multi-relational data mining Relational database Item sets Large database Memory usage Mining associations Multirelational data mining Pattern mining Relational Database Algorithms Data mining Database systems |
title_short |
Multi-relational algorithm for mining association rules in large databases |
title_full |
Multi-relational algorithm for mining association rules in large databases |
title_fullStr |
Multi-relational algorithm for mining association rules in large databases |
title_full_unstemmed |
Multi-relational algorithm for mining association rules in large databases |
title_sort |
Multi-relational algorithm for mining association rules in large databases |
author |
Valêncio, Carlos Roberto [UNESP] |
author_facet |
Valêncio, Carlos Roberto [UNESP] Oyama, Fernando Takeshi [UNESP] Ichiba, Fernando Tochio [UNESP] De Souza, Rogéria Cristiane Gratão [UNESP] |
author_role |
author |
author2 |
Oyama, Fernando Takeshi [UNESP] Ichiba, Fernando Tochio [UNESP] De Souza, Rogéria Cristiane Gratão [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Valêncio, Carlos Roberto [UNESP] Oyama, Fernando Takeshi [UNESP] Ichiba, Fernando Tochio [UNESP] De Souza, Rogéria Cristiane Gratão [UNESP] |
dc.subject.por.fl_str_mv |
Association rules Frequent itemsets mining Multi-relational data mining Relational database Item sets Large database Memory usage Mining associations Multirelational data mining Pattern mining Relational Database Algorithms Data mining Database systems |
topic |
Association rules Frequent itemsets mining Multi-relational data mining Relational database Item sets Large database Memory usage Mining associations Multirelational data mining Pattern mining Relational Database Algorithms Data mining Database systems |
description |
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-01 2014-05-27T11:26:14Z 2014-05-27T11:26:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PDCAT.2011.56 Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 269-274. http://hdl.handle.net/11449/72859 10.1109/PDCAT.2011.56 2-s2.0-84856658056 4644812253875832 5914651754517864 0000-0002-9325-3159 0000-0002-7449-9022 |
url |
http://dx.doi.org/10.1109/PDCAT.2011.56 http://hdl.handle.net/11449/72859 |
identifier_str_mv |
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 269-274. 10.1109/PDCAT.2011.56 2-s2.0-84856658056 4644812253875832 5914651754517864 0000-0002-9325-3159 0000-0002-7449-9022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
269-274 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128935632830464 |