Flavour singlets in gauge theory as permutations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/JHEP12(2016)142 http://hdl.handle.net/11449/174014 |
Resumo: | Gauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group SO(Nf) in U(Nc) gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at Nf = 6, belong to the scalar sector of N= 4 SYM. A simple formula is given for the two-point functions in the free field limit of gY M 2 = 0. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite Nc, Nf. Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes. |
id |
UNSP_13014c3183b850eef8488d6f0b74d432 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/174014 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Flavour singlets in gauge theory as permutations1/N ExpansionAdS-CFT CorrespondenceSupersymmetric gauge theoryGauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group SO(Nf) in U(Nc) gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at Nf = 6, belong to the scalar sector of N= 4 SYM. A simple formula is given for the two-point functions in the free field limit of gY M 2 = 0. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite Nc, Nf. Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes.Okayama Institute for Quantum Physics (OIQP), Furugyo-cho 1-7-36Centre for Research in String Theory School of Physics and Astronomy Queen Mary University of London, Mile End RoadNational Institute for Theoretical Physics School of Physics and Mandelstam Institute for Theoretical Physics University of WitwatersrandICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP — Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271ICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP — Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271Okayama Institute for Quantum Physics (OIQP)Queen Mary University of LondonUniversity of WitwatersrandUniversidade Estadual Paulista (Unesp)Kimura, YusukeRamgoolam, SanjayeSuzuki, Ryo [UNESP]2018-12-11T17:08:45Z2018-12-11T17:08:45Z2016-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1007/JHEP12(2016)142Journal of High Energy Physics, v. 2016, n. 12, 2016.1029-84791126-6708http://hdl.handle.net/11449/17401410.1007/JHEP12(2016)1422-s2.0-850075000162-s2.0-85007500016.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physics1,2271,227info:eu-repo/semantics/openAccess2023-12-16T06:23:35Zoai:repositorio.unesp.br:11449/174014Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:30:35.008017Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Flavour singlets in gauge theory as permutations |
title |
Flavour singlets in gauge theory as permutations |
spellingShingle |
Flavour singlets in gauge theory as permutations Kimura, Yusuke 1/N Expansion AdS-CFT Correspondence Supersymmetric gauge theory |
title_short |
Flavour singlets in gauge theory as permutations |
title_full |
Flavour singlets in gauge theory as permutations |
title_fullStr |
Flavour singlets in gauge theory as permutations |
title_full_unstemmed |
Flavour singlets in gauge theory as permutations |
title_sort |
Flavour singlets in gauge theory as permutations |
author |
Kimura, Yusuke |
author_facet |
Kimura, Yusuke Ramgoolam, Sanjaye Suzuki, Ryo [UNESP] |
author_role |
author |
author2 |
Ramgoolam, Sanjaye Suzuki, Ryo [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Okayama Institute for Quantum Physics (OIQP) Queen Mary University of London University of Witwatersrand Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Kimura, Yusuke Ramgoolam, Sanjaye Suzuki, Ryo [UNESP] |
dc.subject.por.fl_str_mv |
1/N Expansion AdS-CFT Correspondence Supersymmetric gauge theory |
topic |
1/N Expansion AdS-CFT Correspondence Supersymmetric gauge theory |
description |
Gauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group SO(Nf) in U(Nc) gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at Nf = 6, belong to the scalar sector of N= 4 SYM. A simple formula is given for the two-point functions in the free field limit of gY M 2 = 0. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite Nc, Nf. Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01 2018-12-11T17:08:45Z 2018-12-11T17:08:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/JHEP12(2016)142 Journal of High Energy Physics, v. 2016, n. 12, 2016. 1029-8479 1126-6708 http://hdl.handle.net/11449/174014 10.1007/JHEP12(2016)142 2-s2.0-85007500016 2-s2.0-85007500016.pdf |
url |
http://dx.doi.org/10.1007/JHEP12(2016)142 http://hdl.handle.net/11449/174014 |
identifier_str_mv |
Journal of High Energy Physics, v. 2016, n. 12, 2016. 1029-8479 1126-6708 10.1007/JHEP12(2016)142 2-s2.0-85007500016 2-s2.0-85007500016.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of High Energy Physics 1,227 1,227 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129212773564416 |