Flavour singlets in gauge theory as permutations

Detalhes bibliográficos
Autor(a) principal: Kimura, Yusuke
Data de Publicação: 2016
Outros Autores: Ramgoolam, Sanjaye, Suzuki, Ryo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/JHEP12(2016)142
http://hdl.handle.net/11449/174014
Resumo: Gauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group SO(Nf) in U(Nc) gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at Nf = 6, belong to the scalar sector of N= 4 SYM. A simple formula is given for the two-point functions in the free field limit of gY M 2 = 0. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite Nc, Nf. Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes.
id UNSP_13014c3183b850eef8488d6f0b74d432
oai_identifier_str oai:repositorio.unesp.br:11449/174014
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Flavour singlets in gauge theory as permutations1/N ExpansionAdS-CFT CorrespondenceSupersymmetric gauge theoryGauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group SO(Nf) in U(Nc) gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at Nf = 6, belong to the scalar sector of N= 4 SYM. A simple formula is given for the two-point functions in the free field limit of gY M 2 = 0. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite Nc, Nf. Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes.Okayama Institute for Quantum Physics (OIQP), Furugyo-cho 1-7-36Centre for Research in String Theory School of Physics and Astronomy Queen Mary University of London, Mile End RoadNational Institute for Theoretical Physics School of Physics and Mandelstam Institute for Theoretical Physics University of WitwatersrandICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP — Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271ICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP — Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271Okayama Institute for Quantum Physics (OIQP)Queen Mary University of LondonUniversity of WitwatersrandUniversidade Estadual Paulista (Unesp)Kimura, YusukeRamgoolam, SanjayeSuzuki, Ryo [UNESP]2018-12-11T17:08:45Z2018-12-11T17:08:45Z2016-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1007/JHEP12(2016)142Journal of High Energy Physics, v. 2016, n. 12, 2016.1029-84791126-6708http://hdl.handle.net/11449/17401410.1007/JHEP12(2016)1422-s2.0-850075000162-s2.0-85007500016.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physics1,2271,227info:eu-repo/semantics/openAccess2023-12-16T06:23:35Zoai:repositorio.unesp.br:11449/174014Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:30:35.008017Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Flavour singlets in gauge theory as permutations
title Flavour singlets in gauge theory as permutations
spellingShingle Flavour singlets in gauge theory as permutations
Kimura, Yusuke
1/N Expansion
AdS-CFT Correspondence
Supersymmetric gauge theory
title_short Flavour singlets in gauge theory as permutations
title_full Flavour singlets in gauge theory as permutations
title_fullStr Flavour singlets in gauge theory as permutations
title_full_unstemmed Flavour singlets in gauge theory as permutations
title_sort Flavour singlets in gauge theory as permutations
author Kimura, Yusuke
author_facet Kimura, Yusuke
Ramgoolam, Sanjaye
Suzuki, Ryo [UNESP]
author_role author
author2 Ramgoolam, Sanjaye
Suzuki, Ryo [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Okayama Institute for Quantum Physics (OIQP)
Queen Mary University of London
University of Witwatersrand
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Kimura, Yusuke
Ramgoolam, Sanjaye
Suzuki, Ryo [UNESP]
dc.subject.por.fl_str_mv 1/N Expansion
AdS-CFT Correspondence
Supersymmetric gauge theory
topic 1/N Expansion
AdS-CFT Correspondence
Supersymmetric gauge theory
description Gauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group SO(Nf) in U(Nc) gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at Nf = 6, belong to the scalar sector of N= 4 SYM. A simple formula is given for the two-point functions in the free field limit of gY M 2 = 0. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite Nc, Nf. Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-01
2018-12-11T17:08:45Z
2018-12-11T17:08:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/JHEP12(2016)142
Journal of High Energy Physics, v. 2016, n. 12, 2016.
1029-8479
1126-6708
http://hdl.handle.net/11449/174014
10.1007/JHEP12(2016)142
2-s2.0-85007500016
2-s2.0-85007500016.pdf
url http://dx.doi.org/10.1007/JHEP12(2016)142
http://hdl.handle.net/11449/174014
identifier_str_mv Journal of High Energy Physics, v. 2016, n. 12, 2016.
1029-8479
1126-6708
10.1007/JHEP12(2016)142
2-s2.0-85007500016
2-s2.0-85007500016.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of High Energy Physics
1,227
1,227
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129212773564416