Twisted Affine Integrable Hierarchies and Soliton Solutions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s13538-022-01230-4 http://hdl.handle.net/11449/248039 |
Resumo: | A systematic construction of a class of integrable hierarchy is discussed in terms of the twisted affine A2r(2) Lie algebra. The zero curvature representation of the time evolution equations is shown to be classified according to its algebraic structure and according to its vacuum solutions. It is shown that a class of models admit both zero and constant (non-zero) vacuum solutions. Another consists essentially of integral non-local equations and can be classified into two sub-classes, one admitting only zero vacuum and another of constant strictly non-zero vacuum solutions. The two-dimensional gauge potentials in the vacuum play a crucial ingredient and are shown to be expanded in powers of the vacuum parameter v. Soliton solutions are constructed from vertex operators, which for the non-zero vacuum solutions correspond to deformations characterized by v. |
id |
UNSP_13ab76f231b26980f36779b8bd413edf |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/248039 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Twisted Affine Integrable Hierarchies and Soliton SolutionsIntegrable hierarchiesKac-Moody algebrasSoliton solutionsVertex operatorsA systematic construction of a class of integrable hierarchy is discussed in terms of the twisted affine A2r(2) Lie algebra. The zero curvature representation of the time evolution equations is shown to be classified according to its algebraic structure and according to its vacuum solutions. It is shown that a class of models admit both zero and constant (non-zero) vacuum solutions. Another consists essentially of integral non-local equations and can be classified into two sub-classes, one admitting only zero vacuum and another of constant strictly non-zero vacuum solutions. The two-dimensional gauge potentials in the vacuum play a crucial ingredient and are shown to be expanded in powers of the vacuum parameter v. Soliton solutions are constructed from vertex operators, which for the non-zero vacuum solutions correspond to deformations characterized by v.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Instituto de Física Teórica - IFT/UNESP, Rua Dr. Bento Teobaldo Ferraz, 271, Bloco II, SPInstituto de Física Teórica - IFT/UNESP, Rua Dr. Bento Teobaldo Ferraz, 271, Bloco II, SPFAPESP: 2021/00623-4Universidade Estadual Paulista (UNESP)Adans, Y. F. [UNESP]Gomes, J. F. [UNESP]Lobo, G. V. [UNESP]Zimerman, A. H. [UNESP]2023-07-29T13:32:50Z2023-07-29T13:32:50Z2023-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s13538-022-01230-4Brazilian Journal of Physics, v. 53, n. 1, 2023.1678-44480103-9733http://hdl.handle.net/11449/24803910.1007/s13538-022-01230-42-s2.0-85144095751Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physicsinfo:eu-repo/semantics/openAccess2023-07-29T13:32:50Zoai:repositorio.unesp.br:11449/248039Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:02:13.837518Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Twisted Affine Integrable Hierarchies and Soliton Solutions |
title |
Twisted Affine Integrable Hierarchies and Soliton Solutions |
spellingShingle |
Twisted Affine Integrable Hierarchies and Soliton Solutions Adans, Y. F. [UNESP] Integrable hierarchies Kac-Moody algebras Soliton solutions Vertex operators |
title_short |
Twisted Affine Integrable Hierarchies and Soliton Solutions |
title_full |
Twisted Affine Integrable Hierarchies and Soliton Solutions |
title_fullStr |
Twisted Affine Integrable Hierarchies and Soliton Solutions |
title_full_unstemmed |
Twisted Affine Integrable Hierarchies and Soliton Solutions |
title_sort |
Twisted Affine Integrable Hierarchies and Soliton Solutions |
author |
Adans, Y. F. [UNESP] |
author_facet |
Adans, Y. F. [UNESP] Gomes, J. F. [UNESP] Lobo, G. V. [UNESP] Zimerman, A. H. [UNESP] |
author_role |
author |
author2 |
Gomes, J. F. [UNESP] Lobo, G. V. [UNESP] Zimerman, A. H. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Adans, Y. F. [UNESP] Gomes, J. F. [UNESP] Lobo, G. V. [UNESP] Zimerman, A. H. [UNESP] |
dc.subject.por.fl_str_mv |
Integrable hierarchies Kac-Moody algebras Soliton solutions Vertex operators |
topic |
Integrable hierarchies Kac-Moody algebras Soliton solutions Vertex operators |
description |
A systematic construction of a class of integrable hierarchy is discussed in terms of the twisted affine A2r(2) Lie algebra. The zero curvature representation of the time evolution equations is shown to be classified according to its algebraic structure and according to its vacuum solutions. It is shown that a class of models admit both zero and constant (non-zero) vacuum solutions. Another consists essentially of integral non-local equations and can be classified into two sub-classes, one admitting only zero vacuum and another of constant strictly non-zero vacuum solutions. The two-dimensional gauge potentials in the vacuum play a crucial ingredient and are shown to be expanded in powers of the vacuum parameter v. Soliton solutions are constructed from vertex operators, which for the non-zero vacuum solutions correspond to deformations characterized by v. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-29T13:32:50Z 2023-07-29T13:32:50Z 2023-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s13538-022-01230-4 Brazilian Journal of Physics, v. 53, n. 1, 2023. 1678-4448 0103-9733 http://hdl.handle.net/11449/248039 10.1007/s13538-022-01230-4 2-s2.0-85144095751 |
url |
http://dx.doi.org/10.1007/s13538-022-01230-4 http://hdl.handle.net/11449/248039 |
identifier_str_mv |
Brazilian Journal of Physics, v. 53, n. 1, 2023. 1678-4448 0103-9733 10.1007/s13538-022-01230-4 2-s2.0-85144095751 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128742879395840 |