Nanoporous carbon superstructures based on covalent bonding of porous fullerenes

Detalhes bibliográficos
Autor(a) principal: Silveira, Julian F.R.V.
Data de Publicação: 2018
Outros Autores: Pagnussati, Rafaela A., Kleinpaul, Júlia, Paupitz, Ricardo [UNESP], Muniz, Andre R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.carbon.2018.01.041
http://hdl.handle.net/11449/175831
Resumo: Highly porous and mechanically stable nanostructures are of great interest for applications in selective membranes, adsorbents, catalysts and sensors. In this study, we use Density Functional Theory calculations and Molecular Dynamics (MD) simulations to demonstrate the feasibility of a novel class of porous carbon-based nanostructures with uniform pore size distributions, formed by covalent bonding of porous fullerenes. Their corresponding mechanical and electronic properties are evaluated, and results show that they typically exhibit an outstanding mechanical strength and electronic behavior ranging from metallic to semiconducting, depending on the hybridization of the covalent interconnections and dimensionality. The efficacy of these materials as molecular sieves is also demonstrated using MD simulations of gas transport across the nanoporous structure. This combination of properties makes these nanostructures suitable for the development of novel porous functional materials with several potential applications.
id UNSP_14b1534fbd04cc7ac6028d972fcfeb9d
oai_identifier_str oai:repositorio.unesp.br:11449/175831
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Nanoporous carbon superstructures based on covalent bonding of porous fullerenesHighly porous and mechanically stable nanostructures are of great interest for applications in selective membranes, adsorbents, catalysts and sensors. In this study, we use Density Functional Theory calculations and Molecular Dynamics (MD) simulations to demonstrate the feasibility of a novel class of porous carbon-based nanostructures with uniform pore size distributions, formed by covalent bonding of porous fullerenes. Their corresponding mechanical and electronic properties are evaluated, and results show that they typically exhibit an outstanding mechanical strength and electronic behavior ranging from metallic to semiconducting, depending on the hybridization of the covalent interconnections and dimensionality. The efficacy of these materials as molecular sieves is also demonstrated using MD simulations of gas transport across the nanoporous structure. This combination of properties makes these nanostructures suitable for the development of novel porous functional materials with several potential applications.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ministério da Ciência, Tecnologia e InovaçãoDepartment of Chemical Engineering Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre-RSPhysics Department Sao Paulo State University (UNESP), Rio Claro-SPPhysics Department Sao Paulo State University (UNESP), Rio Claro-SPFAPESP: 2014/15521-9Ministério da Ciência, Tecnologia e Inovação: 449824/2014-4Universidade Federal do Rio Grande do Sul (UFRGS)Universidade Estadual Paulista (Unesp)Silveira, Julian F.R.V.Pagnussati, Rafaela A.Kleinpaul, JúliaPaupitz, Ricardo [UNESP]Muniz, Andre R.2018-12-11T17:17:46Z2018-12-11T17:17:46Z2018-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article424-432application/pdfhttp://dx.doi.org/10.1016/j.carbon.2018.01.041Carbon, v. 130, p. 424-432.0008-6223http://hdl.handle.net/11449/17583110.1016/j.carbon.2018.01.0412-s2.0-850414917832-s2.0-85041491783.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCarbon2,226info:eu-repo/semantics/openAccess2023-12-06T06:19:42Zoai:repositorio.unesp.br:11449/175831Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:38:23.507060Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
title Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
spellingShingle Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
Silveira, Julian F.R.V.
title_short Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
title_full Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
title_fullStr Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
title_full_unstemmed Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
title_sort Nanoporous carbon superstructures based on covalent bonding of porous fullerenes
author Silveira, Julian F.R.V.
author_facet Silveira, Julian F.R.V.
Pagnussati, Rafaela A.
Kleinpaul, Júlia
Paupitz, Ricardo [UNESP]
Muniz, Andre R.
author_role author
author2 Pagnussati, Rafaela A.
Kleinpaul, Júlia
Paupitz, Ricardo [UNESP]
Muniz, Andre R.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do Rio Grande do Sul (UFRGS)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Silveira, Julian F.R.V.
Pagnussati, Rafaela A.
Kleinpaul, Júlia
Paupitz, Ricardo [UNESP]
Muniz, Andre R.
description Highly porous and mechanically stable nanostructures are of great interest for applications in selective membranes, adsorbents, catalysts and sensors. In this study, we use Density Functional Theory calculations and Molecular Dynamics (MD) simulations to demonstrate the feasibility of a novel class of porous carbon-based nanostructures with uniform pore size distributions, formed by covalent bonding of porous fullerenes. Their corresponding mechanical and electronic properties are evaluated, and results show that they typically exhibit an outstanding mechanical strength and electronic behavior ranging from metallic to semiconducting, depending on the hybridization of the covalent interconnections and dimensionality. The efficacy of these materials as molecular sieves is also demonstrated using MD simulations of gas transport across the nanoporous structure. This combination of properties makes these nanostructures suitable for the development of novel porous functional materials with several potential applications.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:17:46Z
2018-12-11T17:17:46Z
2018-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.carbon.2018.01.041
Carbon, v. 130, p. 424-432.
0008-6223
http://hdl.handle.net/11449/175831
10.1016/j.carbon.2018.01.041
2-s2.0-85041491783
2-s2.0-85041491783.pdf
url http://dx.doi.org/10.1016/j.carbon.2018.01.041
http://hdl.handle.net/11449/175831
identifier_str_mv Carbon, v. 130, p. 424-432.
0008-6223
10.1016/j.carbon.2018.01.041
2-s2.0-85041491783
2-s2.0-85041491783.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Carbon
2,226
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 424-432
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129099421450240