Bayesian analysis of CCDM models

Detalhes bibliográficos
Autor(a) principal: Jesus, J. F. [UNESP]
Data de Publicação: 2017
Outros Autores: Valentim, R., Andrade-Oliveira, F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1475-7516/2017/09/030
http://hdl.handle.net/11449/175331
Resumo: Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
id UNSP_14e7c3f236def221f943b8bcec9a90c6
oai_identifier_str oai:repositorio.unesp.br:11449/175331
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bayesian analysis of CCDM modelsdark energy theorydark matter theorysupernova type Ia-standard candlesCreation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.Universidade Estadual Paulista (Unesp) Câmpus Experimental de Itapeva, Rua Geraldo Alckmin 519, Vila N. Sra. de FátimaUniversidade Estadual Paulista (Unesp) Faculdade de Engenharia Departamento de Física e Química, Av. Dr. Ariberto Pereira da Cunha 333Departamento de Física Instituto de Ciências Ambientais Químicas e Farmacêuticas-ICAQF Universidade Federal de São Paulo (UNIFESP) Unidade José Alencar, Rua São Nicolau No. 210Institute of Cosmology and Gravitation University of Portsmouth, Burnaby RoadUniversidade Estadual Paulista (Unesp) Câmpus Experimental de Itapeva, Rua Geraldo Alckmin 519, Vila N. Sra. de FátimaUniversidade Estadual Paulista (Unesp) Faculdade de Engenharia Departamento de Física e Química, Av. Dr. Ariberto Pereira da Cunha 333Universidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)University of PortsmouthJesus, J. F. [UNESP]Valentim, R.Andrade-Oliveira, F.2018-12-11T17:15:20Z2018-12-11T17:15:20Z2017-09-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1088/1475-7516/2017/09/030Journal of Cosmology and Astroparticle Physics, v. 2017, n. 9, 2017.1475-7516http://hdl.handle.net/11449/17533110.1088/1475-7516/2017/09/0302-s2.0-850311141322-s2.0-85031114132.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Cosmology and Astroparticle Physics1,089info:eu-repo/semantics/openAccess2023-10-11T06:04:17Zoai:repositorio.unesp.br:11449/175331Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:35:46.230834Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bayesian analysis of CCDM models
title Bayesian analysis of CCDM models
spellingShingle Bayesian analysis of CCDM models
Jesus, J. F. [UNESP]
dark energy theory
dark matter theory
supernova type Ia-standard candles
title_short Bayesian analysis of CCDM models
title_full Bayesian analysis of CCDM models
title_fullStr Bayesian analysis of CCDM models
title_full_unstemmed Bayesian analysis of CCDM models
title_sort Bayesian analysis of CCDM models
author Jesus, J. F. [UNESP]
author_facet Jesus, J. F. [UNESP]
Valentim, R.
Andrade-Oliveira, F.
author_role author
author2 Valentim, R.
Andrade-Oliveira, F.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Paulo (UNIFESP)
University of Portsmouth
dc.contributor.author.fl_str_mv Jesus, J. F. [UNESP]
Valentim, R.
Andrade-Oliveira, F.
dc.subject.por.fl_str_mv dark energy theory
dark matter theory
supernova type Ia-standard candles
topic dark energy theory
dark matter theory
supernova type Ia-standard candles
description Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-20
2018-12-11T17:15:20Z
2018-12-11T17:15:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1475-7516/2017/09/030
Journal of Cosmology and Astroparticle Physics, v. 2017, n. 9, 2017.
1475-7516
http://hdl.handle.net/11449/175331
10.1088/1475-7516/2017/09/030
2-s2.0-85031114132
2-s2.0-85031114132.pdf
url http://dx.doi.org/10.1088/1475-7516/2017/09/030
http://hdl.handle.net/11449/175331
identifier_str_mv Journal of Cosmology and Astroparticle Physics, v. 2017, n. 9, 2017.
1475-7516
10.1088/1475-7516/2017/09/030
2-s2.0-85031114132
2-s2.0-85031114132.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Cosmology and Astroparticle Physics
1,089
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128384508624896