Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers

Detalhes bibliográficos
Autor(a) principal: Perez, A. [UNESP]
Data de Publicação: 2020
Outros Autores: Amorim, Rodrigo G., Villegas, Cesar E. P., Rocha, Alexandre R. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1039/d0cp04138f
http://hdl.handle.net/11449/206973
Resumo: The realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T′-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T′-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level.
id UNSP_18527ca09c4dbca8571d657611f17f92
oai_identifier_str oai:repositorio.unesp.br:11449/206973
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Nanogap-based all-electronic DNA sequencing devices using MoS2monolayersThe realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T′-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T′-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level.Instituto de Física Teórica Universidade Estadual Paulista (UNESP), Rua Dr Bento T. Ferraz, 271Departamento de Física Universidade Federal FluminenseDepartamento de Ciencias Universidad Privada Del NorteFacultad de Ciencias Físicas Universidad Nacional Mayor de San MarcosInstituto de Física Teórica Universidade Estadual Paulista (UNESP), Rua Dr Bento T. Ferraz, 271Universidade Estadual Paulista (Unesp)Universidade Federal Fluminense (UFF)Universidad Privada Del NorteUniversidad Nacional Mayor de San MarcosPerez, A. [UNESP]Amorim, Rodrigo G.Villegas, Cesar E. P.Rocha, Alexandre R. [UNESP]2021-06-25T10:46:56Z2021-06-25T10:46:56Z2020-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article27053-27059http://dx.doi.org/10.1039/d0cp04138fPhysical Chemistry Chemical Physics, v. 22, n. 46, p. 27053-27059, 2020.1463-9076http://hdl.handle.net/11449/20697310.1039/d0cp04138f2-s2.0-85097587178Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Chemistry Chemical Physicsinfo:eu-repo/semantics/openAccess2021-10-23T15:48:51Zoai:repositorio.unesp.br:11449/206973Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:00:45.531769Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
title Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
spellingShingle Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
Perez, A. [UNESP]
title_short Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
title_full Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
title_fullStr Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
title_full_unstemmed Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
title_sort Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
author Perez, A. [UNESP]
author_facet Perez, A. [UNESP]
Amorim, Rodrigo G.
Villegas, Cesar E. P.
Rocha, Alexandre R. [UNESP]
author_role author
author2 Amorim, Rodrigo G.
Villegas, Cesar E. P.
Rocha, Alexandre R. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal Fluminense (UFF)
Universidad Privada Del Norte
Universidad Nacional Mayor de San Marcos
dc.contributor.author.fl_str_mv Perez, A. [UNESP]
Amorim, Rodrigo G.
Villegas, Cesar E. P.
Rocha, Alexandre R. [UNESP]
description The realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T′-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T′-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-14
2021-06-25T10:46:56Z
2021-06-25T10:46:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1039/d0cp04138f
Physical Chemistry Chemical Physics, v. 22, n. 46, p. 27053-27059, 2020.
1463-9076
http://hdl.handle.net/11449/206973
10.1039/d0cp04138f
2-s2.0-85097587178
url http://dx.doi.org/10.1039/d0cp04138f
http://hdl.handle.net/11449/206973
identifier_str_mv Physical Chemistry Chemical Physics, v. 22, n. 46, p. 27053-27059, 2020.
1463-9076
10.1039/d0cp04138f
2-s2.0-85097587178
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Chemistry Chemical Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 27053-27059
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129149625171968