Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1039/d0cp04138f http://hdl.handle.net/11449/206973 |
Resumo: | The realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T′-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T′-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level. |
id |
UNSP_18527ca09c4dbca8571d657611f17f92 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/206973 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayersThe realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T′-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T′-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level.Instituto de Física Teórica Universidade Estadual Paulista (UNESP), Rua Dr Bento T. Ferraz, 271Departamento de Física Universidade Federal FluminenseDepartamento de Ciencias Universidad Privada Del NorteFacultad de Ciencias Físicas Universidad Nacional Mayor de San MarcosInstituto de Física Teórica Universidade Estadual Paulista (UNESP), Rua Dr Bento T. Ferraz, 271Universidade Estadual Paulista (Unesp)Universidade Federal Fluminense (UFF)Universidad Privada Del NorteUniversidad Nacional Mayor de San MarcosPerez, A. [UNESP]Amorim, Rodrigo G.Villegas, Cesar E. P.Rocha, Alexandre R. [UNESP]2021-06-25T10:46:56Z2021-06-25T10:46:56Z2020-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article27053-27059http://dx.doi.org/10.1039/d0cp04138fPhysical Chemistry Chemical Physics, v. 22, n. 46, p. 27053-27059, 2020.1463-9076http://hdl.handle.net/11449/20697310.1039/d0cp04138f2-s2.0-85097587178Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Chemistry Chemical Physicsinfo:eu-repo/semantics/openAccess2021-10-23T15:48:51Zoai:repositorio.unesp.br:11449/206973Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:00:45.531769Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers |
title |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers |
spellingShingle |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers Perez, A. [UNESP] |
title_short |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers |
title_full |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers |
title_fullStr |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers |
title_full_unstemmed |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers |
title_sort |
Nanogap-based all-electronic DNA sequencing devices using MoS2monolayers |
author |
Perez, A. [UNESP] |
author_facet |
Perez, A. [UNESP] Amorim, Rodrigo G. Villegas, Cesar E. P. Rocha, Alexandre R. [UNESP] |
author_role |
author |
author2 |
Amorim, Rodrigo G. Villegas, Cesar E. P. Rocha, Alexandre R. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal Fluminense (UFF) Universidad Privada Del Norte Universidad Nacional Mayor de San Marcos |
dc.contributor.author.fl_str_mv |
Perez, A. [UNESP] Amorim, Rodrigo G. Villegas, Cesar E. P. Rocha, Alexandre R. [UNESP] |
description |
The realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T′-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T′-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-14 2021-06-25T10:46:56Z 2021-06-25T10:46:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1039/d0cp04138f Physical Chemistry Chemical Physics, v. 22, n. 46, p. 27053-27059, 2020. 1463-9076 http://hdl.handle.net/11449/206973 10.1039/d0cp04138f 2-s2.0-85097587178 |
url |
http://dx.doi.org/10.1039/d0cp04138f http://hdl.handle.net/11449/206973 |
identifier_str_mv |
Physical Chemistry Chemical Physics, v. 22, n. 46, p. 27053-27059, 2020. 1463-9076 10.1039/d0cp04138f 2-s2.0-85097587178 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Chemistry Chemical Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
27053-27059 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129149625171968 |