Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images

Detalhes bibliográficos
Autor(a) principal: Condé, Rita de Cássia
Data de Publicação: 2019
Outros Autores: Martinez, Jean-Michel, Pessotto, Marco Aurélio [UNESP], Villar, Raúl, Cochonneau, Gérard, Henry, Raoul [UNESP], Lopes, Walszon, Nogueira, Marcos [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/rs11030314
http://hdl.handle.net/11449/188719
Resumo: In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.
id UNSP_19650e03163d13e494d6891bac619af9
oai_identifier_str oai:repositorio.unesp.br:11449/188719
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing imagesMODISParanapanema RiverRemote sensingReservoirRiver sediment dischargeSediment trap efficiencySedimentationSuspended particulate matterTurbidityWater colorIn this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.Agência Nacional de águas (ANA), Setor Policial, área 5, Qd. 3, Bloco LInstituto de Geociências Universidade de Brasília (UnB) Campus Universitário Darcy Ribeiro ICC CentroGéosciences Environnement Toulouse (GET) UMR5563 Institut de Recherche pour le Développement (IRD) Centre National de la Recherche Scientifique (CNRS)/Université Toulouse 3, 14, Avenue Edouard BelinDepartamento de Zoologia Instituto de Biociências Universidade Estadual Paulista (UNESP), Distrito de Rubião JúniorInstituto Geofísico del Perú (IGP), Calle Badajoz 169, Urb. Mayorazgo IV etapaDepartamento de Zoologia Instituto de Biociências Universidade Estadual Paulista (UNESP), Distrito de Rubião JúniorAgência Nacional de águas (ANA)Universidade de Brasília (UnB)Centre National de la Recherche Scientifique (CNRS)/Université Toulouse 3Universidade Estadual Paulista (Unesp)Instituto Geofísico del Perú (IGP)Condé, Rita de CássiaMartinez, Jean-MichelPessotto, Marco Aurélio [UNESP]Villar, RaúlCochonneau, GérardHenry, Raoul [UNESP]Lopes, WalszonNogueira, Marcos [UNESP]2019-10-06T16:17:07Z2019-10-06T16:17:07Z2019-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/rs11030314Remote Sensing, v. 11, n. 3, 2019.2072-4292http://hdl.handle.net/11449/18871910.3390/rs110303142-s2.0-8506137718232275726724702600000-0002-4000-2524Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRemote Sensinginfo:eu-repo/semantics/openAccess2021-10-23T20:18:48Zoai:repositorio.unesp.br:11449/188719Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:20:09.458341Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
title Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
spellingShingle Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
Condé, Rita de Cássia
MODIS
Paranapanema River
Remote sensing
Reservoir
River sediment discharge
Sediment trap efficiency
Sedimentation
Suspended particulate matter
Turbidity
Water color
title_short Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
title_full Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
title_fullStr Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
title_full_unstemmed Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
title_sort Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
author Condé, Rita de Cássia
author_facet Condé, Rita de Cássia
Martinez, Jean-Michel
Pessotto, Marco Aurélio [UNESP]
Villar, Raúl
Cochonneau, Gérard
Henry, Raoul [UNESP]
Lopes, Walszon
Nogueira, Marcos [UNESP]
author_role author
author2 Martinez, Jean-Michel
Pessotto, Marco Aurélio [UNESP]
Villar, Raúl
Cochonneau, Gérard
Henry, Raoul [UNESP]
Lopes, Walszon
Nogueira, Marcos [UNESP]
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Agência Nacional de águas (ANA)
Universidade de Brasília (UnB)
Centre National de la Recherche Scientifique (CNRS)/Université Toulouse 3
Universidade Estadual Paulista (Unesp)
Instituto Geofísico del Perú (IGP)
dc.contributor.author.fl_str_mv Condé, Rita de Cássia
Martinez, Jean-Michel
Pessotto, Marco Aurélio [UNESP]
Villar, Raúl
Cochonneau, Gérard
Henry, Raoul [UNESP]
Lopes, Walszon
Nogueira, Marcos [UNESP]
dc.subject.por.fl_str_mv MODIS
Paranapanema River
Remote sensing
Reservoir
River sediment discharge
Sediment trap efficiency
Sedimentation
Suspended particulate matter
Turbidity
Water color
topic MODIS
Paranapanema River
Remote sensing
Reservoir
River sediment discharge
Sediment trap efficiency
Sedimentation
Suspended particulate matter
Turbidity
Water color
description In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T16:17:07Z
2019-10-06T16:17:07Z
2019-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/rs11030314
Remote Sensing, v. 11, n. 3, 2019.
2072-4292
http://hdl.handle.net/11449/188719
10.3390/rs11030314
2-s2.0-85061377182
3227572672470260
0000-0002-4000-2524
url http://dx.doi.org/10.3390/rs11030314
http://hdl.handle.net/11449/188719
identifier_str_mv Remote Sensing, v. 11, n. 3, 2019.
2072-4292
10.3390/rs11030314
2-s2.0-85061377182
3227572672470260
0000-0002-4000-2524
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Remote Sensing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128348854943744