Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/rs11030314 http://hdl.handle.net/11449/188719 |
Resumo: | In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale. |
id |
UNSP_19650e03163d13e494d6891bac619af9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/188719 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing imagesMODISParanapanema RiverRemote sensingReservoirRiver sediment dischargeSediment trap efficiencySedimentationSuspended particulate matterTurbidityWater colorIn this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.Agência Nacional de águas (ANA), Setor Policial, área 5, Qd. 3, Bloco LInstituto de Geociências Universidade de Brasília (UnB) Campus Universitário Darcy Ribeiro ICC CentroGéosciences Environnement Toulouse (GET) UMR5563 Institut de Recherche pour le Développement (IRD) Centre National de la Recherche Scientifique (CNRS)/Université Toulouse 3, 14, Avenue Edouard BelinDepartamento de Zoologia Instituto de Biociências Universidade Estadual Paulista (UNESP), Distrito de Rubião JúniorInstituto Geofísico del Perú (IGP), Calle Badajoz 169, Urb. Mayorazgo IV etapaDepartamento de Zoologia Instituto de Biociências Universidade Estadual Paulista (UNESP), Distrito de Rubião JúniorAgência Nacional de águas (ANA)Universidade de Brasília (UnB)Centre National de la Recherche Scientifique (CNRS)/Université Toulouse 3Universidade Estadual Paulista (Unesp)Instituto Geofísico del Perú (IGP)Condé, Rita de CássiaMartinez, Jean-MichelPessotto, Marco Aurélio [UNESP]Villar, RaúlCochonneau, GérardHenry, Raoul [UNESP]Lopes, WalszonNogueira, Marcos [UNESP]2019-10-06T16:17:07Z2019-10-06T16:17:07Z2019-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/rs11030314Remote Sensing, v. 11, n. 3, 2019.2072-4292http://hdl.handle.net/11449/18871910.3390/rs110303142-s2.0-8506137718232275726724702600000-0002-4000-2524Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRemote Sensinginfo:eu-repo/semantics/openAccess2021-10-23T20:18:48Zoai:repositorio.unesp.br:11449/188719Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:20:09.458341Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
spellingShingle |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images Condé, Rita de Cássia MODIS Paranapanema River Remote sensing Reservoir River sediment discharge Sediment trap efficiency Sedimentation Suspended particulate matter Turbidity Water color |
title_short |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_full |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_fullStr |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_full_unstemmed |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_sort |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
author |
Condé, Rita de Cássia |
author_facet |
Condé, Rita de Cássia Martinez, Jean-Michel Pessotto, Marco Aurélio [UNESP] Villar, Raúl Cochonneau, Gérard Henry, Raoul [UNESP] Lopes, Walszon Nogueira, Marcos [UNESP] |
author_role |
author |
author2 |
Martinez, Jean-Michel Pessotto, Marco Aurélio [UNESP] Villar, Raúl Cochonneau, Gérard Henry, Raoul [UNESP] Lopes, Walszon Nogueira, Marcos [UNESP] |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Agência Nacional de águas (ANA) Universidade de Brasília (UnB) Centre National de la Recherche Scientifique (CNRS)/Université Toulouse 3 Universidade Estadual Paulista (Unesp) Instituto Geofísico del Perú (IGP) |
dc.contributor.author.fl_str_mv |
Condé, Rita de Cássia Martinez, Jean-Michel Pessotto, Marco Aurélio [UNESP] Villar, Raúl Cochonneau, Gérard Henry, Raoul [UNESP] Lopes, Walszon Nogueira, Marcos [UNESP] |
dc.subject.por.fl_str_mv |
MODIS Paranapanema River Remote sensing Reservoir River sediment discharge Sediment trap efficiency Sedimentation Suspended particulate matter Turbidity Water color |
topic |
MODIS Paranapanema River Remote sensing Reservoir River sediment discharge Sediment trap efficiency Sedimentation Suspended particulate matter Turbidity Water color |
description |
In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T16:17:07Z 2019-10-06T16:17:07Z 2019-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/rs11030314 Remote Sensing, v. 11, n. 3, 2019. 2072-4292 http://hdl.handle.net/11449/188719 10.3390/rs11030314 2-s2.0-85061377182 3227572672470260 0000-0002-4000-2524 |
url |
http://dx.doi.org/10.3390/rs11030314 http://hdl.handle.net/11449/188719 |
identifier_str_mv |
Remote Sensing, v. 11, n. 3, 2019. 2072-4292 10.3390/rs11030314 2-s2.0-85061377182 3227572672470260 0000-0002-4000-2524 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Remote Sensing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128348854943744 |