Tinkertoys for the E-6 theory

Detalhes bibliográficos
Autor(a) principal: Chacaltana, Oscar [UNESP]
Data de Publicação: 2015
Outros Autores: Distler, Jacques, Trimm, Anderson
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/JHEP09(2015)007
http://hdl.handle.net/11449/160924
Resumo: Compactifying the 6-dimensional (2,0) superconformal field theory, of type ADE, on a Riemann surface, C, with codimension-2 defect operators at points on C, yields a 4-dimensional N = 2 superconformal field theory. An outstanding problem is to classify the 4D theories one obtains, in this way, and to understand their properties. In this paper, we turn our attention to the E-6 (2,0) theory, which (unlike the A- and D-series) has no realization in terms of M5-branes. Classifying the 4D theories amounts to classifying all of the 3-punctured spheres (fixtures), and the cylinders that connect them, that can occur in a pants-decomposition of C. We find 904 fixtures: 19 corresponding to free hypermultiplets, 825 corresponding to isolated interacting SCFTs (with no known Lagrangian description) and 60 mixed fixtures, corresponding to a combination of free hypermultiplets and an interacting SCFT. Of the 825 interacting fixtures, we list only the 139 interesting ones. As an application, we study the strong coupling limits of the Lagrangian field theories: E-6 with 4 hypermultiplets in the 27 and F-4 with 3 hypermultiplets in the 26.
id UNSP_19933cb6b1fde00a10b325fb1cfbe12b
oai_identifier_str oai:repositorio.unesp.br:11449/160924
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Tinkertoys for the E-6 theorySupersymmetric gauge theorySupersymmetry and DualityExtended SupersymmetryDuality in Gauge Field TheoriesCompactifying the 6-dimensional (2,0) superconformal field theory, of type ADE, on a Riemann surface, C, with codimension-2 defect operators at points on C, yields a 4-dimensional N = 2 superconformal field theory. An outstanding problem is to classify the 4D theories one obtains, in this way, and to understand their properties. In this paper, we turn our attention to the E-6 (2,0) theory, which (unlike the A- and D-series) has no realization in terms of M5-branes. Classifying the 4D theories amounts to classifying all of the 3-punctured spheres (fixtures), and the cylinders that connect them, that can occur in a pants-decomposition of C. We find 904 fixtures: 19 corresponding to free hypermultiplets, 825 corresponding to isolated interacting SCFTs (with no known Lagrangian description) and 60 mixed fixtures, corresponding to a combination of free hypermultiplets and an interacting SCFT. Of the 825 interacting fixtures, we list only the 139 interesting ones. As an application, we study the strong coupling limits of the Lagrangian field theories: E-6 with 4 hypermultiplets in the 27 and F-4 with 3 hypermultiplets in the 26.National Science FoundationSimons FoundationINCT-MatematicaICTP-SAIFR in BrazilUniv Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, BrazilUniv Texas Austin, Theory Grp, Austin, TX 78712 USAUniv Texas Austin, Dept Phys, Texas Cosmol Ctr, Austin, TX 78712 USAUniv Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, BrazilNational Science Foundation: PHY-1066293National Science Foundation: PHY-1316033SpringerUniversidade Estadual Paulista (Unesp)Univ Texas AustinChacaltana, Oscar [UNESP]Distler, JacquesTrimm, Anderson2018-11-26T16:17:17Z2018-11-26T16:17:17Z2015-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article56application/pdfhttp://dx.doi.org/10.1007/JHEP09(2015)007Journal Of High Energy Physics. New York: Springer, n. 9, 56 p., 2015.1029-8479http://hdl.handle.net/11449/16092410.1007/JHEP09(2015)007WOS:000363533900007WOS000363533900007.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of High Energy Physicsinfo:eu-repo/semantics/openAccess2024-01-20T06:28:09Zoai:repositorio.unesp.br:11449/160924Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:26:51.011051Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Tinkertoys for the E-6 theory
title Tinkertoys for the E-6 theory
spellingShingle Tinkertoys for the E-6 theory
Chacaltana, Oscar [UNESP]
Supersymmetric gauge theory
Supersymmetry and Duality
Extended Supersymmetry
Duality in Gauge Field Theories
title_short Tinkertoys for the E-6 theory
title_full Tinkertoys for the E-6 theory
title_fullStr Tinkertoys for the E-6 theory
title_full_unstemmed Tinkertoys for the E-6 theory
title_sort Tinkertoys for the E-6 theory
author Chacaltana, Oscar [UNESP]
author_facet Chacaltana, Oscar [UNESP]
Distler, Jacques
Trimm, Anderson
author_role author
author2 Distler, Jacques
Trimm, Anderson
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Univ Texas Austin
dc.contributor.author.fl_str_mv Chacaltana, Oscar [UNESP]
Distler, Jacques
Trimm, Anderson
dc.subject.por.fl_str_mv Supersymmetric gauge theory
Supersymmetry and Duality
Extended Supersymmetry
Duality in Gauge Field Theories
topic Supersymmetric gauge theory
Supersymmetry and Duality
Extended Supersymmetry
Duality in Gauge Field Theories
description Compactifying the 6-dimensional (2,0) superconformal field theory, of type ADE, on a Riemann surface, C, with codimension-2 defect operators at points on C, yields a 4-dimensional N = 2 superconformal field theory. An outstanding problem is to classify the 4D theories one obtains, in this way, and to understand their properties. In this paper, we turn our attention to the E-6 (2,0) theory, which (unlike the A- and D-series) has no realization in terms of M5-branes. Classifying the 4D theories amounts to classifying all of the 3-punctured spheres (fixtures), and the cylinders that connect them, that can occur in a pants-decomposition of C. We find 904 fixtures: 19 corresponding to free hypermultiplets, 825 corresponding to isolated interacting SCFTs (with no known Lagrangian description) and 60 mixed fixtures, corresponding to a combination of free hypermultiplets and an interacting SCFT. Of the 825 interacting fixtures, we list only the 139 interesting ones. As an application, we study the strong coupling limits of the Lagrangian field theories: E-6 with 4 hypermultiplets in the 27 and F-4 with 3 hypermultiplets in the 26.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-01
2018-11-26T16:17:17Z
2018-11-26T16:17:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/JHEP09(2015)007
Journal Of High Energy Physics. New York: Springer, n. 9, 56 p., 2015.
1029-8479
http://hdl.handle.net/11449/160924
10.1007/JHEP09(2015)007
WOS:000363533900007
WOS000363533900007.pdf
url http://dx.doi.org/10.1007/JHEP09(2015)007
http://hdl.handle.net/11449/160924
identifier_str_mv Journal Of High Energy Physics. New York: Springer, n. 9, 56 p., 2015.
1029-8479
10.1007/JHEP09(2015)007
WOS:000363533900007
WOS000363533900007.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of High Energy Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 56
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129521953538048