Spacecraft motion around artificial equilibrium points
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s11071-017-3959-2 http://hdl.handle.net/11449/170451 |
Resumo: | The main goal of this paper is to describe the motion of a spacecraft around an artificial equilibrium point in the circular restricted three-body problem. The spacecraft is under the gravitational influence of the Sun and the Earth, as primary and secondary bodies, subjected to the force due to the solar radiation pressure and some extra perturbations. Analytical solutions for the equations of motion of the spacecraft are found using several methods and for different extra perturbations. These solutions are strictly valid at the artificial equilibrium point, but they are used as approximations to describe the motion around this artificial equilibrium point. As an application of the method, the perturbation due to the gravitational influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial equilibrium point, near the L3 Lagrangian point of the Sun–Earth system. The system is propagated starting from this point using analytical and numerical solutions. Comparisons between analytical–analytical and analytical–numerical solutions for several kinds of perturbations are made to guide the choice of the best analytical solution, with the best accuracy. |
id |
UNSP_1a0794d8d564d67aca2a43e47f9d6215 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/170451 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Spacecraft motion around artificial equilibrium pointsAstrodynamicsEquilibrium pointsNonlinear systemsRestricted three-body problemThe main goal of this paper is to describe the motion of a spacecraft around an artificial equilibrium point in the circular restricted three-body problem. The spacecraft is under the gravitational influence of the Sun and the Earth, as primary and secondary bodies, subjected to the force due to the solar radiation pressure and some extra perturbations. Analytical solutions for the equations of motion of the spacecraft are found using several methods and for different extra perturbations. These solutions are strictly valid at the artificial equilibrium point, but they are used as approximations to describe the motion around this artificial equilibrium point. As an application of the method, the perturbation due to the gravitational influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial equilibrium point, near the L3 Lagrangian point of the Sun–Earth system. The system is propagated starting from this point using analytical and numerical solutions. Comparisons between analytical–analytical and analytical–numerical solutions for several kinds of perturbations are made to guide the choice of the best analytical solution, with the best accuracy.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto Nacional de Pesquisas Espaciais (INPE)Universidade Estadual Paulista (UNESP)Universidade Estadual Paulista (UNESP)FAPESP: 2014/22293-2FAPESP: 2014/22295-5FAPESP: 2016/14665-2FAPESP: 2016/24561-0CNPq: 301338/2016-7CNPq: 305834/2013-4CNPq: 406841/2016-0Instituto Nacional de Pesquisas Espaciais (INPE)Universidade Estadual Paulista (Unesp)de Almeida, A. K.Prado, A. F.B.A.Yokoyama, T. [UNESP]Sanchez, D. M.2018-12-11T16:50:51Z2018-12-11T16:50:51Z2018-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1473-1489application/pdfhttp://dx.doi.org/10.1007/s11071-017-3959-2Nonlinear Dynamics, v. 91, n. 3, p. 1473-1489, 2018.1573-269X0924-090Xhttp://hdl.handle.net/11449/17045110.1007/s11071-017-3959-22-s2.0-850376377742-s2.0-85037637774.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamicsinfo:eu-repo/semantics/openAccess2023-10-02T06:08:43Zoai:repositorio.unesp.br:11449/170451Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:49:27.576388Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Spacecraft motion around artificial equilibrium points |
title |
Spacecraft motion around artificial equilibrium points |
spellingShingle |
Spacecraft motion around artificial equilibrium points de Almeida, A. K. Astrodynamics Equilibrium points Nonlinear systems Restricted three-body problem |
title_short |
Spacecraft motion around artificial equilibrium points |
title_full |
Spacecraft motion around artificial equilibrium points |
title_fullStr |
Spacecraft motion around artificial equilibrium points |
title_full_unstemmed |
Spacecraft motion around artificial equilibrium points |
title_sort |
Spacecraft motion around artificial equilibrium points |
author |
de Almeida, A. K. |
author_facet |
de Almeida, A. K. Prado, A. F.B.A. Yokoyama, T. [UNESP] Sanchez, D. M. |
author_role |
author |
author2 |
Prado, A. F.B.A. Yokoyama, T. [UNESP] Sanchez, D. M. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
de Almeida, A. K. Prado, A. F.B.A. Yokoyama, T. [UNESP] Sanchez, D. M. |
dc.subject.por.fl_str_mv |
Astrodynamics Equilibrium points Nonlinear systems Restricted three-body problem |
topic |
Astrodynamics Equilibrium points Nonlinear systems Restricted three-body problem |
description |
The main goal of this paper is to describe the motion of a spacecraft around an artificial equilibrium point in the circular restricted three-body problem. The spacecraft is under the gravitational influence of the Sun and the Earth, as primary and secondary bodies, subjected to the force due to the solar radiation pressure and some extra perturbations. Analytical solutions for the equations of motion of the spacecraft are found using several methods and for different extra perturbations. These solutions are strictly valid at the artificial equilibrium point, but they are used as approximations to describe the motion around this artificial equilibrium point. As an application of the method, the perturbation due to the gravitational influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial equilibrium point, near the L3 Lagrangian point of the Sun–Earth system. The system is propagated starting from this point using analytical and numerical solutions. Comparisons between analytical–analytical and analytical–numerical solutions for several kinds of perturbations are made to guide the choice of the best analytical solution, with the best accuracy. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T16:50:51Z 2018-12-11T16:50:51Z 2018-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11071-017-3959-2 Nonlinear Dynamics, v. 91, n. 3, p. 1473-1489, 2018. 1573-269X 0924-090X http://hdl.handle.net/11449/170451 10.1007/s11071-017-3959-2 2-s2.0-85037637774 2-s2.0-85037637774.pdf |
url |
http://dx.doi.org/10.1007/s11071-017-3959-2 http://hdl.handle.net/11449/170451 |
identifier_str_mv |
Nonlinear Dynamics, v. 91, n. 3, p. 1473-1489, 2018. 1573-269X 0924-090X 10.1007/s11071-017-3959-2 2-s2.0-85037637774 2-s2.0-85037637774.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Dynamics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1473-1489 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128279548264448 |