Spacecraft motion around artificial equilibrium points

Detalhes bibliográficos
Autor(a) principal: de Almeida, A. K.
Data de Publicação: 2018
Outros Autores: Prado, A. F.B.A., Yokoyama, T. [UNESP], Sanchez, D. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s11071-017-3959-2
http://hdl.handle.net/11449/170451
Resumo: The main goal of this paper is to describe the motion of a spacecraft around an artificial equilibrium point in the circular restricted three-body problem. The spacecraft is under the gravitational influence of the Sun and the Earth, as primary and secondary bodies, subjected to the force due to the solar radiation pressure and some extra perturbations. Analytical solutions for the equations of motion of the spacecraft are found using several methods and for different extra perturbations. These solutions are strictly valid at the artificial equilibrium point, but they are used as approximations to describe the motion around this artificial equilibrium point. As an application of the method, the perturbation due to the gravitational influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial equilibrium point, near the L3 Lagrangian point of the Sun–Earth system. The system is propagated starting from this point using analytical and numerical solutions. Comparisons between analytical–analytical and analytical–numerical solutions for several kinds of perturbations are made to guide the choice of the best analytical solution, with the best accuracy.
id UNSP_1a0794d8d564d67aca2a43e47f9d6215
oai_identifier_str oai:repositorio.unesp.br:11449/170451
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Spacecraft motion around artificial equilibrium pointsAstrodynamicsEquilibrium pointsNonlinear systemsRestricted three-body problemThe main goal of this paper is to describe the motion of a spacecraft around an artificial equilibrium point in the circular restricted three-body problem. The spacecraft is under the gravitational influence of the Sun and the Earth, as primary and secondary bodies, subjected to the force due to the solar radiation pressure and some extra perturbations. Analytical solutions for the equations of motion of the spacecraft are found using several methods and for different extra perturbations. These solutions are strictly valid at the artificial equilibrium point, but they are used as approximations to describe the motion around this artificial equilibrium point. As an application of the method, the perturbation due to the gravitational influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial equilibrium point, near the L3 Lagrangian point of the Sun–Earth system. The system is propagated starting from this point using analytical and numerical solutions. Comparisons between analytical–analytical and analytical–numerical solutions for several kinds of perturbations are made to guide the choice of the best analytical solution, with the best accuracy.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto Nacional de Pesquisas Espaciais (INPE)Universidade Estadual Paulista (UNESP)Universidade Estadual Paulista (UNESP)FAPESP: 2014/22293-2FAPESP: 2014/22295-5FAPESP: 2016/14665-2FAPESP: 2016/24561-0CNPq: 301338/2016-7CNPq: 305834/2013-4CNPq: 406841/2016-0Instituto Nacional de Pesquisas Espaciais (INPE)Universidade Estadual Paulista (Unesp)de Almeida, A. K.Prado, A. F.B.A.Yokoyama, T. [UNESP]Sanchez, D. M.2018-12-11T16:50:51Z2018-12-11T16:50:51Z2018-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1473-1489application/pdfhttp://dx.doi.org/10.1007/s11071-017-3959-2Nonlinear Dynamics, v. 91, n. 3, p. 1473-1489, 2018.1573-269X0924-090Xhttp://hdl.handle.net/11449/17045110.1007/s11071-017-3959-22-s2.0-850376377742-s2.0-85037637774.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamicsinfo:eu-repo/semantics/openAccess2023-10-02T06:08:43Zoai:repositorio.unesp.br:11449/170451Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:49:27.576388Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Spacecraft motion around artificial equilibrium points
title Spacecraft motion around artificial equilibrium points
spellingShingle Spacecraft motion around artificial equilibrium points
de Almeida, A. K.
Astrodynamics
Equilibrium points
Nonlinear systems
Restricted three-body problem
title_short Spacecraft motion around artificial equilibrium points
title_full Spacecraft motion around artificial equilibrium points
title_fullStr Spacecraft motion around artificial equilibrium points
title_full_unstemmed Spacecraft motion around artificial equilibrium points
title_sort Spacecraft motion around artificial equilibrium points
author de Almeida, A. K.
author_facet de Almeida, A. K.
Prado, A. F.B.A.
Yokoyama, T. [UNESP]
Sanchez, D. M.
author_role author
author2 Prado, A. F.B.A.
Yokoyama, T. [UNESP]
Sanchez, D. M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv de Almeida, A. K.
Prado, A. F.B.A.
Yokoyama, T. [UNESP]
Sanchez, D. M.
dc.subject.por.fl_str_mv Astrodynamics
Equilibrium points
Nonlinear systems
Restricted three-body problem
topic Astrodynamics
Equilibrium points
Nonlinear systems
Restricted three-body problem
description The main goal of this paper is to describe the motion of a spacecraft around an artificial equilibrium point in the circular restricted three-body problem. The spacecraft is under the gravitational influence of the Sun and the Earth, as primary and secondary bodies, subjected to the force due to the solar radiation pressure and some extra perturbations. Analytical solutions for the equations of motion of the spacecraft are found using several methods and for different extra perturbations. These solutions are strictly valid at the artificial equilibrium point, but they are used as approximations to describe the motion around this artificial equilibrium point. As an application of the method, the perturbation due to the gravitational influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial equilibrium point, near the L3 Lagrangian point of the Sun–Earth system. The system is propagated starting from this point using analytical and numerical solutions. Comparisons between analytical–analytical and analytical–numerical solutions for several kinds of perturbations are made to guide the choice of the best analytical solution, with the best accuracy.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T16:50:51Z
2018-12-11T16:50:51Z
2018-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11071-017-3959-2
Nonlinear Dynamics, v. 91, n. 3, p. 1473-1489, 2018.
1573-269X
0924-090X
http://hdl.handle.net/11449/170451
10.1007/s11071-017-3959-2
2-s2.0-85037637774
2-s2.0-85037637774.pdf
url http://dx.doi.org/10.1007/s11071-017-3959-2
http://hdl.handle.net/11449/170451
identifier_str_mv Nonlinear Dynamics, v. 91, n. 3, p. 1473-1489, 2018.
1573-269X
0924-090X
10.1007/s11071-017-3959-2
2-s2.0-85037637774
2-s2.0-85037637774.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Dynamics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1473-1489
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128279548264448