Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1049/iet-gtd.2016.1409 http://hdl.handle.net/11449/174656 |
Resumo: | This study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster-Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application. |
id |
UNSP_1aaf78863483da4d9ac87d8981a8c667 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/174656 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feedersThis study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster-Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application.Instituto Federal de Educação Ciência e Tecnologia de São Paulo (IFSP) Câmpus Votuporanga, Avenida Jerônimo Figueira da Costa, 3014Instituto Federal de Educação Ciência e Tecnologia de São Paulo (IFSP) Câmpus Presidente Epitácio, Rua José Ramos Júnior, 27-50Electrical Engineering Department Campus of Ilha Solteira UNESP Universidade Estadual Paulista, Av. Brasil 56, P.O. Box 31Electrical Engineering Department Campus of Ilha Solteira UNESP Universidade Estadual Paulista, Av. Brasil 56, P.O. Box 31Câmpus VotuporangaCâmpus Presidente EpitácioUniversidade Estadual Paulista (Unesp)Tonelli-Neto, Mauro S.Decanini, José Guilherme M.S.Lotufo, Anna Diva P. [UNESP]Minussi, Carlos Roberto [UNESP]2018-12-11T17:12:18Z2018-12-11T17:12:18Z2017-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1557-1565application/pdfhttp://dx.doi.org/10.1049/iet-gtd.2016.1409IET Generation, Transmission and Distribution, v. 11, n. 6, p. 1557-1565, 2017.1751-8687http://hdl.handle.net/11449/17465610.1049/iet-gtd.2016.14092-s2.0-850198982052-s2.0-85019898205.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIET Generation, Transmission and Distribution0,907info:eu-repo/semantics/openAccess2024-07-04T19:06:46Zoai:repositorio.unesp.br:11449/174656Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:00:04.730136Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders |
title |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders |
spellingShingle |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders Tonelli-Neto, Mauro S. |
title_short |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders |
title_full |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders |
title_fullStr |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders |
title_full_unstemmed |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders |
title_sort |
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders |
author |
Tonelli-Neto, Mauro S. |
author_facet |
Tonelli-Neto, Mauro S. Decanini, José Guilherme M.S. Lotufo, Anna Diva P. [UNESP] Minussi, Carlos Roberto [UNESP] |
author_role |
author |
author2 |
Decanini, José Guilherme M.S. Lotufo, Anna Diva P. [UNESP] Minussi, Carlos Roberto [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Câmpus Votuporanga Câmpus Presidente Epitácio Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Tonelli-Neto, Mauro S. Decanini, José Guilherme M.S. Lotufo, Anna Diva P. [UNESP] Minussi, Carlos Roberto [UNESP] |
description |
This study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster-Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-20 2018-12-11T17:12:18Z 2018-12-11T17:12:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1049/iet-gtd.2016.1409 IET Generation, Transmission and Distribution, v. 11, n. 6, p. 1557-1565, 2017. 1751-8687 http://hdl.handle.net/11449/174656 10.1049/iet-gtd.2016.1409 2-s2.0-85019898205 2-s2.0-85019898205.pdf |
url |
http://dx.doi.org/10.1049/iet-gtd.2016.1409 http://hdl.handle.net/11449/174656 |
identifier_str_mv |
IET Generation, Transmission and Distribution, v. 11, n. 6, p. 1557-1565, 2017. 1751-8687 10.1049/iet-gtd.2016.1409 2-s2.0-85019898205 2-s2.0-85019898205.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
IET Generation, Transmission and Distribution 0,907 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1557-1565 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129382492930048 |