Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders

Detalhes bibliográficos
Autor(a) principal: Tonelli-Neto, Mauro S.
Data de Publicação: 2017
Outros Autores: Decanini, José Guilherme M.S., Lotufo, Anna Diva P. [UNESP], Minussi, Carlos Roberto [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1049/iet-gtd.2016.1409
http://hdl.handle.net/11449/174656
Resumo: This study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster-Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application.
id UNSP_1aaf78863483da4d9ac87d8981a8c667
oai_identifier_str oai:repositorio.unesp.br:11449/174656
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feedersThis study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster-Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application.Instituto Federal de Educação Ciência e Tecnologia de São Paulo (IFSP) Câmpus Votuporanga, Avenida Jerônimo Figueira da Costa, 3014Instituto Federal de Educação Ciência e Tecnologia de São Paulo (IFSP) Câmpus Presidente Epitácio, Rua José Ramos Júnior, 27-50Electrical Engineering Department Campus of Ilha Solteira UNESP Universidade Estadual Paulista, Av. Brasil 56, P.O. Box 31Electrical Engineering Department Campus of Ilha Solteira UNESP Universidade Estadual Paulista, Av. Brasil 56, P.O. Box 31Câmpus VotuporangaCâmpus Presidente EpitácioUniversidade Estadual Paulista (Unesp)Tonelli-Neto, Mauro S.Decanini, José Guilherme M.S.Lotufo, Anna Diva P. [UNESP]Minussi, Carlos Roberto [UNESP]2018-12-11T17:12:18Z2018-12-11T17:12:18Z2017-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1557-1565application/pdfhttp://dx.doi.org/10.1049/iet-gtd.2016.1409IET Generation, Transmission and Distribution, v. 11, n. 6, p. 1557-1565, 2017.1751-8687http://hdl.handle.net/11449/17465610.1049/iet-gtd.2016.14092-s2.0-850198982052-s2.0-85019898205.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIET Generation, Transmission and Distribution0,907info:eu-repo/semantics/openAccess2024-07-04T19:06:46Zoai:repositorio.unesp.br:11449/174656Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:00:04.730136Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
title Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
spellingShingle Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
Tonelli-Neto, Mauro S.
title_short Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
title_full Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
title_fullStr Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
title_full_unstemmed Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
title_sort Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
author Tonelli-Neto, Mauro S.
author_facet Tonelli-Neto, Mauro S.
Decanini, José Guilherme M.S.
Lotufo, Anna Diva P. [UNESP]
Minussi, Carlos Roberto [UNESP]
author_role author
author2 Decanini, José Guilherme M.S.
Lotufo, Anna Diva P. [UNESP]
Minussi, Carlos Roberto [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Câmpus Votuporanga
Câmpus Presidente Epitácio
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Tonelli-Neto, Mauro S.
Decanini, José Guilherme M.S.
Lotufo, Anna Diva P. [UNESP]
Minussi, Carlos Roberto [UNESP]
description This study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster-Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-20
2018-12-11T17:12:18Z
2018-12-11T17:12:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1049/iet-gtd.2016.1409
IET Generation, Transmission and Distribution, v. 11, n. 6, p. 1557-1565, 2017.
1751-8687
http://hdl.handle.net/11449/174656
10.1049/iet-gtd.2016.1409
2-s2.0-85019898205
2-s2.0-85019898205.pdf
url http://dx.doi.org/10.1049/iet-gtd.2016.1409
http://hdl.handle.net/11449/174656
identifier_str_mv IET Generation, Transmission and Distribution, v. 11, n. 6, p. 1557-1565, 2017.
1751-8687
10.1049/iet-gtd.2016.1409
2-s2.0-85019898205
2-s2.0-85019898205.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IET Generation, Transmission and Distribution
0,907
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1557-1565
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129382492930048