Comparing rankings from using TODIM and a fuzzy expert system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.procs.2015.07.019 http://hdl.handle.net/11449/168478 |
Resumo: | TODIM is, in its original formulation, an MCDA method developed to solve ranking problems. As an MCDA method TODIM combines the use of a multi-attribute value function as well as elements of the Outranking Approach, being founded on Prospect Theory. Recent advances in TODIM incorporate concepts from Fuzzy Sets. Although modelling multicriteria decision problems with Fuzzy Sets has been utilized when the available data are imprecise, their use in MCDA is slightly controversial, because the data fuzzification can invalidate the outcome. Following a mixed qualitative-quantitative research strategy, our aim is to prove that for the ranking problems, TODIM can provide better solutions than Fuzzy Sets. Ranks from TODIM are linear, or strong, in a sense that it has no ties between the alternative solutions. The rank obtained with a Fuzzy Expert System can be weaker, that is, it may be a number of ties. The research strategy extends this result to ranking problems with the occurrence of crisp criteria. |
id |
UNSP_1d11d719a5dcc8254f61c8339412ae97 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/168478 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Comparing rankings from using TODIM and a fuzzy expert systemFuzzy expert systemsRanking problemTODIMTODIM is, in its original formulation, an MCDA method developed to solve ranking problems. As an MCDA method TODIM combines the use of a multi-attribute value function as well as elements of the Outranking Approach, being founded on Prospect Theory. Recent advances in TODIM incorporate concepts from Fuzzy Sets. Although modelling multicriteria decision problems with Fuzzy Sets has been utilized when the available data are imprecise, their use in MCDA is slightly controversial, because the data fuzzification can invalidate the outcome. Following a mixed qualitative-quantitative research strategy, our aim is to prove that for the ranking problems, TODIM can provide better solutions than Fuzzy Sets. Ranks from TODIM are linear, or strong, in a sense that it has no ties between the alternative solutions. The rank obtained with a Fuzzy Expert System can be weaker, that is, it may be a number of ties. The research strategy extends this result to ranking problems with the occurrence of crisp criteria.UFF, Av. dos Trabalhadores 420UNESP, Av. Ariberto Pereira da Cunha, 333UNESP, Av. Ariberto Pereira da Cunha, 333UFFUniversidade Estadual Paulista (Unesp)Salomon, Valério Antonio PamplonaRangel, Luís Alberto Duncan [UNESP]2018-12-11T16:41:27Z2018-12-11T16:41:27Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject126-138http://dx.doi.org/10.1016/j.procs.2015.07.019Procedia Computer Science, v. 55, p. 126-138.1877-0509http://hdl.handle.net/11449/16847810.1016/j.procs.2015.07.0192-s2.0-84960879897Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProcedia Computer Science0,258info:eu-repo/semantics/openAccess2021-10-23T21:44:29Zoai:repositorio.unesp.br:11449/168478Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:34:39.133721Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Comparing rankings from using TODIM and a fuzzy expert system |
title |
Comparing rankings from using TODIM and a fuzzy expert system |
spellingShingle |
Comparing rankings from using TODIM and a fuzzy expert system Salomon, Valério Antonio Pamplona Fuzzy expert systems Ranking problem TODIM |
title_short |
Comparing rankings from using TODIM and a fuzzy expert system |
title_full |
Comparing rankings from using TODIM and a fuzzy expert system |
title_fullStr |
Comparing rankings from using TODIM and a fuzzy expert system |
title_full_unstemmed |
Comparing rankings from using TODIM and a fuzzy expert system |
title_sort |
Comparing rankings from using TODIM and a fuzzy expert system |
author |
Salomon, Valério Antonio Pamplona |
author_facet |
Salomon, Valério Antonio Pamplona Rangel, Luís Alberto Duncan [UNESP] |
author_role |
author |
author2 |
Rangel, Luís Alberto Duncan [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
UFF Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Salomon, Valério Antonio Pamplona Rangel, Luís Alberto Duncan [UNESP] |
dc.subject.por.fl_str_mv |
Fuzzy expert systems Ranking problem TODIM |
topic |
Fuzzy expert systems Ranking problem TODIM |
description |
TODIM is, in its original formulation, an MCDA method developed to solve ranking problems. As an MCDA method TODIM combines the use of a multi-attribute value function as well as elements of the Outranking Approach, being founded on Prospect Theory. Recent advances in TODIM incorporate concepts from Fuzzy Sets. Although modelling multicriteria decision problems with Fuzzy Sets has been utilized when the available data are imprecise, their use in MCDA is slightly controversial, because the data fuzzification can invalidate the outcome. Following a mixed qualitative-quantitative research strategy, our aim is to prove that for the ranking problems, TODIM can provide better solutions than Fuzzy Sets. Ranks from TODIM are linear, or strong, in a sense that it has no ties between the alternative solutions. The rank obtained with a Fuzzy Expert System can be weaker, that is, it may be a number of ties. The research strategy extends this result to ranking problems with the occurrence of crisp criteria. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-12-11T16:41:27Z 2018-12-11T16:41:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.procs.2015.07.019 Procedia Computer Science, v. 55, p. 126-138. 1877-0509 http://hdl.handle.net/11449/168478 10.1016/j.procs.2015.07.019 2-s2.0-84960879897 |
url |
http://dx.doi.org/10.1016/j.procs.2015.07.019 http://hdl.handle.net/11449/168478 |
identifier_str_mv |
Procedia Computer Science, v. 55, p. 126-138. 1877-0509 10.1016/j.procs.2015.07.019 2-s2.0-84960879897 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Procedia Computer Science 0,258 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
126-138 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129222132105216 |