The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance

Detalhes bibliográficos
Autor(a) principal: Leoni, Roberto Campos [UNESP]
Data de Publicação: 2015
Outros Autores: Branco Costa, Antonio Fernando [UNESP], Franco, Bruno Chaves [UNESP], Guerreiro Machado, Marcela Aparecida [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00170-015-7095-1
http://hdl.handle.net/11449/160846
Resumo: In this article, we consider the T (2) control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model-VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart's performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.
id UNSP_1d2bd35f81b2255d1be744f4283b4297
oai_identifier_str oai:repositorio.unesp.br:11449/160846
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performanceAutocorrelationSkipping strategyHotelling T-2 chartVAR (1) modelIn this article, we consider the T (2) control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model-VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart's performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.Sao Paulo State Univ, Prod Dept, BR-12516410 Guaratingueta, SP, BrazilSao Paulo State Univ, Prod Dept, BR-12516410 Guaratingueta, SP, BrazilSpringerUniversidade Estadual Paulista (Unesp)Leoni, Roberto Campos [UNESP]Branco Costa, Antonio Fernando [UNESP]Franco, Bruno Chaves [UNESP]Guerreiro Machado, Marcela Aparecida [UNESP]2018-11-26T16:16:59Z2018-11-26T16:16:59Z2015-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1547-1559application/pdfhttp://dx.doi.org/10.1007/s00170-015-7095-1International Journal Of Advanced Manufacturing Technology. London: Springer London Ltd, v. 80, n. 9-12, p. 1547-1559, 2015.0268-3768http://hdl.handle.net/11449/16084610.1007/s00170-015-7095-1WOS:000361628900007WOS000361628900007.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Advanced Manufacturing Technology0,994info:eu-repo/semantics/openAccess2024-07-02T17:37:04Zoai:repositorio.unesp.br:11449/160846Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:58:50.286260Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
title The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
spellingShingle The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
Leoni, Roberto Campos [UNESP]
Autocorrelation
Skipping strategy
Hotelling T-2 chart
VAR (1) model
title_short The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
title_full The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
title_fullStr The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
title_full_unstemmed The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
title_sort The skipping strategy to reduce the effect of the autocorrelation on the T (2) chart's performance
author Leoni, Roberto Campos [UNESP]
author_facet Leoni, Roberto Campos [UNESP]
Branco Costa, Antonio Fernando [UNESP]
Franco, Bruno Chaves [UNESP]
Guerreiro Machado, Marcela Aparecida [UNESP]
author_role author
author2 Branco Costa, Antonio Fernando [UNESP]
Franco, Bruno Chaves [UNESP]
Guerreiro Machado, Marcela Aparecida [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Leoni, Roberto Campos [UNESP]
Branco Costa, Antonio Fernando [UNESP]
Franco, Bruno Chaves [UNESP]
Guerreiro Machado, Marcela Aparecida [UNESP]
dc.subject.por.fl_str_mv Autocorrelation
Skipping strategy
Hotelling T-2 chart
VAR (1) model
topic Autocorrelation
Skipping strategy
Hotelling T-2 chart
VAR (1) model
description In this article, we consider the T (2) control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model-VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart's performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-01
2018-11-26T16:16:59Z
2018-11-26T16:16:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00170-015-7095-1
International Journal Of Advanced Manufacturing Technology. London: Springer London Ltd, v. 80, n. 9-12, p. 1547-1559, 2015.
0268-3768
http://hdl.handle.net/11449/160846
10.1007/s00170-015-7095-1
WOS:000361628900007
WOS000361628900007.pdf
url http://dx.doi.org/10.1007/s00170-015-7095-1
http://hdl.handle.net/11449/160846
identifier_str_mv International Journal Of Advanced Manufacturing Technology. London: Springer London Ltd, v. 80, n. 9-12, p. 1547-1559, 2015.
0268-3768
10.1007/s00170-015-7095-1
WOS:000361628900007
WOS000361628900007.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal Of Advanced Manufacturing Technology
0,994
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1547-1559
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128299475402752