A portable mobile terrestrial system with omnidirectional camera for close range applications

Detalhes bibliográficos
Autor(a) principal: Campos, Mariana Batista
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/182022
Resumo: This research proposes a new technique for close-range mobile data acquisition and processing, consisting of a backpacked light-weight low-cost system. This system integrates an omnidirectional camera and a GPS/IMU system (Global Positioning Systems/Inertial Measurement Unit System) with a tailored photogrammetric processing chain to obtain sensor location and 3D points coordinates using the fisheye images. Omnidirectional systems, based on multiple cameras covering a full-spherical field of view, have been used in close range photogrammetry applications. The use of omnidirectional systems is especially motivated by their 360° coverage around the sensor, which allows more features to be tracked in a single image shot, and by the light weight and low cost of some off-the-shelf omnidirectional cameras. This kind of systems have been named as Personal Mobile Terrestrial System (PMTS). There are only few studies focusing on PMTS using omnidirectional systems. This research assessed the performance of an omnidirectional PMTS based exclusively on low-cost technologies to indirectly estimate forest and outdoor urban features. An accuracy evaluation of GPS and IMU sensors and the development of rigorous photogrammetric processing considering fisheye geometry were performed. PMTS data, i.e fisheye images and navigation data, are input information for the photogrammetric process. The proposed photogrammetric process focused on omnidirectional camera modelling, feature-based matching and bundle adjustment considering fisheye geometry. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information and a rigorous photogrammetric process can increase the trajectory accuracy, especially in obstructed areas, such as dense tropical forests and some urban environments. Overall, using a postprocessing approach with PMTS data and ground control points, the EOPs (Exterior Orientation Parameters) were estimated with standard deviations of 0.1° for sensor attitude and centimetric accuracy for sensor position. The point cloud generated had an accuracy consistent with the range of the pixel size in the object space units in the central part of omnidirectional images (3.5–8 cm). A PMTS real-time application was simulated in laboratory. The PMTS trajectory was estimated with a planialtimetric accuracy of 0.7 m, while, the 3D map was simultaneously computed with an average accuracy ranging between 0.5 m and 2 m.
id UNSP_1ee8a41e86be37ee99cec01a257cee8f
oai_identifier_str oai:repositorio.unesp.br:11449/182022
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A portable mobile terrestrial system with omnidirectional camera for close range applicationsSistema de mapeamento móvel portátil com câmara omnidirecional para aplicações fotogramétricas à curta distânciaPersonal mobile terrestrial systemMobile mappingPolydioptric system calibrationOmnidirectional image matchingIncremental bundle adjustmentSistema de mapeamento móvel terrestreCâmaras omnidirecionaisCalibração de múltiplas câmarasCorrespondência de imagensAjustamento por feixe de raiosThis research proposes a new technique for close-range mobile data acquisition and processing, consisting of a backpacked light-weight low-cost system. This system integrates an omnidirectional camera and a GPS/IMU system (Global Positioning Systems/Inertial Measurement Unit System) with a tailored photogrammetric processing chain to obtain sensor location and 3D points coordinates using the fisheye images. Omnidirectional systems, based on multiple cameras covering a full-spherical field of view, have been used in close range photogrammetry applications. The use of omnidirectional systems is especially motivated by their 360° coverage around the sensor, which allows more features to be tracked in a single image shot, and by the light weight and low cost of some off-the-shelf omnidirectional cameras. This kind of systems have been named as Personal Mobile Terrestrial System (PMTS). There are only few studies focusing on PMTS using omnidirectional systems. This research assessed the performance of an omnidirectional PMTS based exclusively on low-cost technologies to indirectly estimate forest and outdoor urban features. An accuracy evaluation of GPS and IMU sensors and the development of rigorous photogrammetric processing considering fisheye geometry were performed. PMTS data, i.e fisheye images and navigation data, are input information for the photogrammetric process. The proposed photogrammetric process focused on omnidirectional camera modelling, feature-based matching and bundle adjustment considering fisheye geometry. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information and a rigorous photogrammetric process can increase the trajectory accuracy, especially in obstructed areas, such as dense tropical forests and some urban environments. Overall, using a postprocessing approach with PMTS data and ground control points, the EOPs (Exterior Orientation Parameters) were estimated with standard deviations of 0.1° for sensor attitude and centimetric accuracy for sensor position. The point cloud generated had an accuracy consistent with the range of the pixel size in the object space units in the central part of omnidirectional images (3.5–8 cm). A PMTS real-time application was simulated in laboratory. The PMTS trajectory was estimated with a planialtimetric accuracy of 0.7 m, while, the 3D map was simultaneously computed with an average accuracy ranging between 0.5 m and 2 m.Este trabalho propõe uma nova técnica para aquisição e processamento de dados obtidos com um sistema de mapeamento móvel terrestre leve e de baixo custo embarcado em mochila, conhecido como PMTS (Personal Mobile Terrestrial System - Sistema de Mapeamento Móvel Pessoal). O sistema de mapeamento móvel proposto é composto por uma câmara omnidirecional (imagens fisheye) e um sistema de navegação GPS/IMU (Global Positioning Systems/ Inertial Measurement Unit System). As imagens do tipo fisheye e os dados de navegação coletados com o PMTS são utilizados em um processo fotogramétrico adaptado para a geometria das imagens fisheye para obter a posição do sensor e as coordenadas tridimensionais (3D) do ambiente mapeado (nuvem de pontos). Sistemas omnidirecionais baseado em múltiplas câmaras vêm ganhando visibilidade em diversas aplicações na Fotogrametria a curta distância, como a navegação autônoma e o mapeamento móvel de cidades, floresta e ambientes internos. O uso de múltiplas câmaras é principalmente motivado pelo seu amplo campo de visada (360°), sua portabilidade, o baixo custo de algumas câmaras disponíveis no mercado e seu sistema óptico compacto, sem a necessidade de espelhos externos (sistema catadióptricos) ou dispositivos rotativos (câmaras de varredura por rotação). No entanto, existem poucos estudos voltados ao desenvolvimento de PMTS usando sistemas omnidirecionais. O imageamento de 360° em torno do sensor permite que mais feições sejam mapeadas em uma única imagem, sendo uma boa alternativa para a aquisição dinâmica de dados usando sistemas de mapeamento móvel como o PMTS. Nesse contexto, essa pesquisa avalia a performance de um PMTS desenvolvido a partir da combinação de uma câmara omnidirecional e sensores de navegação de baixo custo para estimar parâmetros florestais e feições urbanas externas com medidas indiretas. A acurácia absoluta e relativa dos sensores GPS e IMU utilizados foi avaliada, assim como, a acurácia da estimativa da posição do sensor e da nuvem de pontos gerada utilizando os dados obtidos com o PMTS proposto e um processo fotogramétrico rigoroso. O processo fotogramétrico utilizado propõe adaptações nas abordagens clássicas de modelagem da geometria do sensor (calibração de câmara), correspondência de imagens e ajustamento por feixe de raios, considerando a geometria das imagens fisheye. A avaliação experimental mostrou que soluções integrando dados de navegação como informações iniciais podem aumentar a acurácia da estimativa da trajetória do PMTS, principalmente em áreas com grande obstrução de sinal, como florestas e áreas urbanas. Os parâmetros de orientação exterior foram estimados em pós processamento com um desvio padrão de 0,1° em atitude e acurácia centimétrica para a estimativa da posição do sensor. A nuvem de pontos também foi gerada com acurácia centimétrica. Em uma aplicação em tempo real, a trajetória do PMTS foi estimada com uma acurácia planialtimétrica de 0,7 m, enquanto, as coordenadas tridimensionais dos pontos no terreno foram simultaneamente calculadas com acurácia variando entre 0.5 m and 2 m.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2013/50426-4CAPES: 1481339Universidade Estadual Paulista (Unesp)Tommaselli, Antonio Maria Garcia [UNESP]Honkavaara, EijaUniversidade Estadual Paulista (Unesp)Campos, Mariana Batista2019-05-14T13:05:14Z2019-05-14T13:05:14Z2019-03-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/18202200091644933004129043P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-20T12:34:25Zoai:repositorio.unesp.br:11449/182022Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-06-20T12:34:25Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A portable mobile terrestrial system with omnidirectional camera for close range applications
Sistema de mapeamento móvel portátil com câmara omnidirecional para aplicações fotogramétricas à curta distância
title A portable mobile terrestrial system with omnidirectional camera for close range applications
spellingShingle A portable mobile terrestrial system with omnidirectional camera for close range applications
Campos, Mariana Batista
Personal mobile terrestrial system
Mobile mapping
Polydioptric system calibration
Omnidirectional image matching
Incremental bundle adjustment
Sistema de mapeamento móvel terrestre
Câmaras omnidirecionais
Calibração de múltiplas câmaras
Correspondência de imagens
Ajustamento por feixe de raios
title_short A portable mobile terrestrial system with omnidirectional camera for close range applications
title_full A portable mobile terrestrial system with omnidirectional camera for close range applications
title_fullStr A portable mobile terrestrial system with omnidirectional camera for close range applications
title_full_unstemmed A portable mobile terrestrial system with omnidirectional camera for close range applications
title_sort A portable mobile terrestrial system with omnidirectional camera for close range applications
author Campos, Mariana Batista
author_facet Campos, Mariana Batista
author_role author
dc.contributor.none.fl_str_mv Tommaselli, Antonio Maria Garcia [UNESP]
Honkavaara, Eija
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Campos, Mariana Batista
dc.subject.por.fl_str_mv Personal mobile terrestrial system
Mobile mapping
Polydioptric system calibration
Omnidirectional image matching
Incremental bundle adjustment
Sistema de mapeamento móvel terrestre
Câmaras omnidirecionais
Calibração de múltiplas câmaras
Correspondência de imagens
Ajustamento por feixe de raios
topic Personal mobile terrestrial system
Mobile mapping
Polydioptric system calibration
Omnidirectional image matching
Incremental bundle adjustment
Sistema de mapeamento móvel terrestre
Câmaras omnidirecionais
Calibração de múltiplas câmaras
Correspondência de imagens
Ajustamento por feixe de raios
description This research proposes a new technique for close-range mobile data acquisition and processing, consisting of a backpacked light-weight low-cost system. This system integrates an omnidirectional camera and a GPS/IMU system (Global Positioning Systems/Inertial Measurement Unit System) with a tailored photogrammetric processing chain to obtain sensor location and 3D points coordinates using the fisheye images. Omnidirectional systems, based on multiple cameras covering a full-spherical field of view, have been used in close range photogrammetry applications. The use of omnidirectional systems is especially motivated by their 360° coverage around the sensor, which allows more features to be tracked in a single image shot, and by the light weight and low cost of some off-the-shelf omnidirectional cameras. This kind of systems have been named as Personal Mobile Terrestrial System (PMTS). There are only few studies focusing on PMTS using omnidirectional systems. This research assessed the performance of an omnidirectional PMTS based exclusively on low-cost technologies to indirectly estimate forest and outdoor urban features. An accuracy evaluation of GPS and IMU sensors and the development of rigorous photogrammetric processing considering fisheye geometry were performed. PMTS data, i.e fisheye images and navigation data, are input information for the photogrammetric process. The proposed photogrammetric process focused on omnidirectional camera modelling, feature-based matching and bundle adjustment considering fisheye geometry. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information and a rigorous photogrammetric process can increase the trajectory accuracy, especially in obstructed areas, such as dense tropical forests and some urban environments. Overall, using a postprocessing approach with PMTS data and ground control points, the EOPs (Exterior Orientation Parameters) were estimated with standard deviations of 0.1° for sensor attitude and centimetric accuracy for sensor position. The point cloud generated had an accuracy consistent with the range of the pixel size in the object space units in the central part of omnidirectional images (3.5–8 cm). A PMTS real-time application was simulated in laboratory. The PMTS trajectory was estimated with a planialtimetric accuracy of 0.7 m, while, the 3D map was simultaneously computed with an average accuracy ranging between 0.5 m and 2 m.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-14T13:05:14Z
2019-05-14T13:05:14Z
2019-03-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/182022
000916449
33004129043P0
url http://hdl.handle.net/11449/182022
identifier_str_mv 000916449
33004129043P0
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803045195229429760