A simplified Fermi Accelerator Model under quadratic frictional force
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/S0103-97332008000100011 http://hdl.handle.net/11449/20649 |
Resumo: | Some dynamical properties for a simplified version of a one-dimensional Fermi Accelerator Model under the action of a small dissipation is studied. The dissipation is introduced via a damping force which is assumed to be proportional to the square particle's velocity. The dynamics of the model is described by using a two-dimensional, nonlinear area contracting mapping for the variables velocity of the particle and time. Our results confirm that the structure of the phase space of the conservative version is replaced by a large number of attracting periodic orbits. For a fixed set of control parameters, we obtain many periodic attractors and show that most of them posses low period. The stable orbits produce a complex structure of basin of attraction whose limit cover almost all phase space, thus suggesting a fractality. |
id |
UNSP_1ffb484e00f11908b2e8a504bedaa9e1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/20649 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A simplified Fermi Accelerator Model under quadratic frictional forceFermi Accelerator ModelDamping ForcesFractal Basin BoundarySome dynamical properties for a simplified version of a one-dimensional Fermi Accelerator Model under the action of a small dissipation is studied. The dissipation is introduced via a damping force which is assumed to be proportional to the square particle's velocity. The dynamics of the model is described by using a two-dimensional, nonlinear area contracting mapping for the variables velocity of the particle and time. Our results confirm that the structure of the phase space of the conservative version is replaced by a large number of attracting periodic orbits. For a fixed set of control parameters, we obtain many periodic attractors and show that most of them posses low period. The stable orbits produce a complex structure of basin of attraction whose limit cover almost all phase space, thus suggesting a fractality.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Estadual Paulista Departamento de FísicaUniversidade Estadual Paulista Departamento de Estatística, Matemática Aplicada e ComputaçãoUniversidade Estadual Paulista Departamento de FísicaUniversidade Estadual Paulista Departamento de Estatística, Matemática Aplicada e ComputaçãoSociedade Brasileira de FísicaUniversidade Estadual Paulista (Unesp)Tavares, Danila F. [UNESP]Leonel, Edson Denis [UNESP]2013-09-30T20:01:27Z2014-05-20T13:57:59Z2013-09-30T20:01:27Z2014-05-20T13:57:59Z2008-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article58-61application/pdfhttp://dx.doi.org/10.1590/S0103-97332008000100011Brazilian Journal of Physics. Sociedade Brasileira de Física, v. 38, n. 1, p. 58-61, 2008.0103-9733http://hdl.handle.net/11449/2064910.1590/S0103-97332008000100011S0103-97332008000100011WOS:000254521800011S0103-97332008000100011.pdf61306442327186100000-0001-8224-3329SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physics1.0820,276info:eu-repo/semantics/openAccess2024-01-18T06:33:58Zoai:repositorio.unesp.br:11449/20649Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:22:41.144499Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A simplified Fermi Accelerator Model under quadratic frictional force |
title |
A simplified Fermi Accelerator Model under quadratic frictional force |
spellingShingle |
A simplified Fermi Accelerator Model under quadratic frictional force Tavares, Danila F. [UNESP] Fermi Accelerator Model Damping Forces Fractal Basin Boundary |
title_short |
A simplified Fermi Accelerator Model under quadratic frictional force |
title_full |
A simplified Fermi Accelerator Model under quadratic frictional force |
title_fullStr |
A simplified Fermi Accelerator Model under quadratic frictional force |
title_full_unstemmed |
A simplified Fermi Accelerator Model under quadratic frictional force |
title_sort |
A simplified Fermi Accelerator Model under quadratic frictional force |
author |
Tavares, Danila F. [UNESP] |
author_facet |
Tavares, Danila F. [UNESP] Leonel, Edson Denis [UNESP] |
author_role |
author |
author2 |
Leonel, Edson Denis [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Tavares, Danila F. [UNESP] Leonel, Edson Denis [UNESP] |
dc.subject.por.fl_str_mv |
Fermi Accelerator Model Damping Forces Fractal Basin Boundary |
topic |
Fermi Accelerator Model Damping Forces Fractal Basin Boundary |
description |
Some dynamical properties for a simplified version of a one-dimensional Fermi Accelerator Model under the action of a small dissipation is studied. The dissipation is introduced via a damping force which is assumed to be proportional to the square particle's velocity. The dynamics of the model is described by using a two-dimensional, nonlinear area contracting mapping for the variables velocity of the particle and time. Our results confirm that the structure of the phase space of the conservative version is replaced by a large number of attracting periodic orbits. For a fixed set of control parameters, we obtain many periodic attractors and show that most of them posses low period. The stable orbits produce a complex structure of basin of attraction whose limit cover almost all phase space, thus suggesting a fractality. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-03-01 2013-09-30T20:01:27Z 2013-09-30T20:01:27Z 2014-05-20T13:57:59Z 2014-05-20T13:57:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0103-97332008000100011 Brazilian Journal of Physics. Sociedade Brasileira de Física, v. 38, n. 1, p. 58-61, 2008. 0103-9733 http://hdl.handle.net/11449/20649 10.1590/S0103-97332008000100011 S0103-97332008000100011 WOS:000254521800011 S0103-97332008000100011.pdf 6130644232718610 0000-0001-8224-3329 |
url |
http://dx.doi.org/10.1590/S0103-97332008000100011 http://hdl.handle.net/11449/20649 |
identifier_str_mv |
Brazilian Journal of Physics. Sociedade Brasileira de Física, v. 38, n. 1, p. 58-61, 2008. 0103-9733 10.1590/S0103-97332008000100011 S0103-97332008000100011 WOS:000254521800011 S0103-97332008000100011.pdf 6130644232718610 0000-0001-8224-3329 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Physics 1.082 0,276 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
58-61 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129514075586560 |