Protecting operations on qudits from noise by continuous dynamical decoupling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevResearch.3.013235 http://hdl.handle.net/11449/233134 |
Resumo: | We develop a procedure of generalized continuous dynamical decoupling (GCDD) for an ensemble of d-level systems (qudits), allowing one to protect the action of an arbitrary multiqudit gate from general noise. We first present our GCDD procedure for the case of an arbitrary qudit and apply it to the case of a Hadamard gate acting on a qutrit. This is done using a model that, in principle, could be implemented using the three magnetic hyperfine states of the ground energy level of Rb87 and laser beams whose intensities and phases are modulated according to our prescription. We show that this model allows one to generate continuously all the possible SU(3) group operations which are, in general, needed to apply the GCDD procedure. We finally show that our method can be extended to the case of an ensemble of qudits, identical or not. |
id |
UNSP_203ee057ae7ec1ca954d5a063376282e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/233134 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Protecting operations on qudits from noise by continuous dynamical decouplingWe develop a procedure of generalized continuous dynamical decoupling (GCDD) for an ensemble of d-level systems (qudits), allowing one to protect the action of an arbitrary multiqudit gate from general noise. We first present our GCDD procedure for the case of an arbitrary qudit and apply it to the case of a Hadamard gate acting on a qutrit. This is done using a model that, in principle, could be implemented using the three magnetic hyperfine states of the ground energy level of Rb87 and laser beams whose intensities and phases are modulated according to our prescription. We show that this model allows one to generate continuously all the possible SU(3) group operations which are, in general, needed to apply the GCDD procedure. We finally show that our method can be extended to the case of an ensemble of qudits, identical or not.São Carlos Institute of Physics University of São Paulo, PO Box 369Faculdade de Ciências Unesp - Universidade Estadual PaulistaInstitut Utinam Cnrs Umr 6213 Université Bourgogne Franche-Comté Observatoire des Sciences de l'Univers Theta, 41 bis avenue de l'ObservatoireFaculdade de Ciências Unesp - Universidade Estadual PaulistaUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Observatoire des Sciences de l'Univers ThetaDe Jesus Napolitano, ReginaldoFanchini, Felipe Fernandes [UNESP]Da Silva, Adonai HilarioBellomo, Bruno2022-05-01T04:26:37Z2022-05-01T04:26:37Z2021-03-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevResearch.3.013235Physical Review Research, v. 3, n. 1, 2021.2643-1564http://hdl.handle.net/11449/23313410.1103/PhysRevResearch.3.0132352-s2.0-85106130050Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Researchinfo:eu-repo/semantics/openAccess2024-04-25T17:39:59Zoai:repositorio.unesp.br:11449/233134Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:56:50.028637Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Protecting operations on qudits from noise by continuous dynamical decoupling |
title |
Protecting operations on qudits from noise by continuous dynamical decoupling |
spellingShingle |
Protecting operations on qudits from noise by continuous dynamical decoupling De Jesus Napolitano, Reginaldo |
title_short |
Protecting operations on qudits from noise by continuous dynamical decoupling |
title_full |
Protecting operations on qudits from noise by continuous dynamical decoupling |
title_fullStr |
Protecting operations on qudits from noise by continuous dynamical decoupling |
title_full_unstemmed |
Protecting operations on qudits from noise by continuous dynamical decoupling |
title_sort |
Protecting operations on qudits from noise by continuous dynamical decoupling |
author |
De Jesus Napolitano, Reginaldo |
author_facet |
De Jesus Napolitano, Reginaldo Fanchini, Felipe Fernandes [UNESP] Da Silva, Adonai Hilario Bellomo, Bruno |
author_role |
author |
author2 |
Fanchini, Felipe Fernandes [UNESP] Da Silva, Adonai Hilario Bellomo, Bruno |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) Observatoire des Sciences de l'Univers Theta |
dc.contributor.author.fl_str_mv |
De Jesus Napolitano, Reginaldo Fanchini, Felipe Fernandes [UNESP] Da Silva, Adonai Hilario Bellomo, Bruno |
description |
We develop a procedure of generalized continuous dynamical decoupling (GCDD) for an ensemble of d-level systems (qudits), allowing one to protect the action of an arbitrary multiqudit gate from general noise. We first present our GCDD procedure for the case of an arbitrary qudit and apply it to the case of a Hadamard gate acting on a qutrit. This is done using a model that, in principle, could be implemented using the three magnetic hyperfine states of the ground energy level of Rb87 and laser beams whose intensities and phases are modulated according to our prescription. We show that this model allows one to generate continuously all the possible SU(3) group operations which are, in general, needed to apply the GCDD procedure. We finally show that our method can be extended to the case of an ensemble of qudits, identical or not. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-12 2022-05-01T04:26:37Z 2022-05-01T04:26:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevResearch.3.013235 Physical Review Research, v. 3, n. 1, 2021. 2643-1564 http://hdl.handle.net/11449/233134 10.1103/PhysRevResearch.3.013235 2-s2.0-85106130050 |
url |
http://dx.doi.org/10.1103/PhysRevResearch.3.013235 http://hdl.handle.net/11449/233134 |
identifier_str_mv |
Physical Review Research, v. 3, n. 1, 2021. 2643-1564 10.1103/PhysRevResearch.3.013235 2-s2.0-85106130050 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review Research |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129001893396480 |