Exploring models of formation and dynamic evolution of satellites and rings of the solar system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/238924 |
Resumo: | Accretion in a circumstellar disk is the main mechanism for the formation of planets, while the formation of satellites and rings can occur through different mechanisms around the central body. This thesis aims to study the formation and stability of different systems of satellites and rings, in different environments and epochs of the Solar System. For this, we employ different numerical techniques. The topics addressed in the thesis are: the formation of Galilean satellites of Jupiter in a circumplanetary disk, the formation of Phobos of Mars due to a material recycling mechanism, the stability of 1+N co-orbital satellites confining the Neptune arcs and their formation due to the disruption of a satellite, and stability around spherical objects with a mass anomaly. We study the Galilean satellites using N-body numerical simulations and assuming that they formed in a circumplanetary disk during the last stages of Jupiter’s formation. The model assumes impacts between satellitesimals, pebble accretion, and includes gas-driven migration, gas tidal damping, and drag. Under these effects, satellites migrate inwards stopping their migration when reaching the disk’s inner cavity or when captured in mean motion resonances. In the system that best matches the masses of the real Galilean system, pairs of adjacent satellites are obtained in 2:1 mean motion resonances. We propose that the Galilean satellites system is a primordial resonant chain and that Callisto left the resonance without breaking the Laplacian resonance via divergent migration due to tidal interactions. The formation of Phobos was analyzed using 1D simulations of disk/satellite interactions. The model assumes that Phobos is a low-cohesion satellite formed through a cascade of disruptions and re-accretions of several parent bodies in a debris disk around Mars. We find that the recycling mechanism must, in fact, take place if the debris disk gives rise to low-cohesion objects. However, if Phobos were formed by this process, it would be accompanied today by a Roche-interior ring. So Phobos cannot be the outcome of such a recycling process. Turning attention to stability of rings, we study the equilibrium configurations for 1+N co-orbital satellites confining the Neptune rings. We use N-body simulations and obtain distinct configurations of satellites, with different numbers and sizes of moonlets, capable of confining arcs. Then, the formation of these possible co-orbital satellites is analyzed assuming the disruption of an ancient body at a Lagrangian point of a moon. The disruption fragments spread out and collide to form the co-orbital system. In such a scenario, the arcs likely formed through a mixture of different processes, with impacts between fragments and meteoroid impacts with the formed moonlets being attractive possibilities. Finally, we use the Poincaré surface of section technique to analyze the stability around a spherical body with a mass anomaly at its equator. Varying the parameters of the central object, we verify the existence of two distinct regions around the body, a chaotic inner region where particles are lost and a stable outer region. In the stable region, spin-orbit resonances are identified, and we obtain that periodic orbits in 1:1+p resonances are asymmetric. Modeling Chariklo as an object with a mass anomaly, we conclude that its rings are in the stable region, but not involved in the 1:3 spin-orbit resonance, as proposed in the literature. The results presented here aim to shed light on the processes involved in the formation of satellites and ring systems, as well as understanding their stability. We also tried to underline the symbiotic relationship between rings and satellites. The different methodologies employed in this thesis can be adapted to other systems in order to bring better knowledge about the origin and fate of other satellites and rings of the Solar System. |
id |
UNSP_205ce31646075338a290a15841953976 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/238924 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Exploring models of formation and dynamic evolution of satellites and rings of the solar systemExploring models of formation and dynamic evolution of satellites and rings of the solar systemSatelitesAstronomiaSolar SystemPlanets - Orbitssatellite formationring formationcircumplanetary diskdebris diskGalilean satellitesPhobosNeptune arcsChariklosatélites GalileanosFobosarcos de NetunoCáriclodisco circumplanetáriodisco de detritosSatéllitesAccretion in a circumstellar disk is the main mechanism for the formation of planets, while the formation of satellites and rings can occur through different mechanisms around the central body. This thesis aims to study the formation and stability of different systems of satellites and rings, in different environments and epochs of the Solar System. For this, we employ different numerical techniques. The topics addressed in the thesis are: the formation of Galilean satellites of Jupiter in a circumplanetary disk, the formation of Phobos of Mars due to a material recycling mechanism, the stability of 1+N co-orbital satellites confining the Neptune arcs and their formation due to the disruption of a satellite, and stability around spherical objects with a mass anomaly. We study the Galilean satellites using N-body numerical simulations and assuming that they formed in a circumplanetary disk during the last stages of Jupiter’s formation. The model assumes impacts between satellitesimals, pebble accretion, and includes gas-driven migration, gas tidal damping, and drag. Under these effects, satellites migrate inwards stopping their migration when reaching the disk’s inner cavity or when captured in mean motion resonances. In the system that best matches the masses of the real Galilean system, pairs of adjacent satellites are obtained in 2:1 mean motion resonances. We propose that the Galilean satellites system is a primordial resonant chain and that Callisto left the resonance without breaking the Laplacian resonance via divergent migration due to tidal interactions. The formation of Phobos was analyzed using 1D simulations of disk/satellite interactions. The model assumes that Phobos is a low-cohesion satellite formed through a cascade of disruptions and re-accretions of several parent bodies in a debris disk around Mars. We find that the recycling mechanism must, in fact, take place if the debris disk gives rise to low-cohesion objects. However, if Phobos were formed by this process, it would be accompanied today by a Roche-interior ring. So Phobos cannot be the outcome of such a recycling process. Turning attention to stability of rings, we study the equilibrium configurations for 1+N co-orbital satellites confining the Neptune rings. We use N-body simulations and obtain distinct configurations of satellites, with different numbers and sizes of moonlets, capable of confining arcs. Then, the formation of these possible co-orbital satellites is analyzed assuming the disruption of an ancient body at a Lagrangian point of a moon. The disruption fragments spread out and collide to form the co-orbital system. In such a scenario, the arcs likely formed through a mixture of different processes, with impacts between fragments and meteoroid impacts with the formed moonlets being attractive possibilities. Finally, we use the Poincaré surface of section technique to analyze the stability around a spherical body with a mass anomaly at its equator. Varying the parameters of the central object, we verify the existence of two distinct regions around the body, a chaotic inner region where particles are lost and a stable outer region. In the stable region, spin-orbit resonances are identified, and we obtain that periodic orbits in 1:1+p resonances are asymmetric. Modeling Chariklo as an object with a mass anomaly, we conclude that its rings are in the stable region, but not involved in the 1:3 spin-orbit resonance, as proposed in the literature. The results presented here aim to shed light on the processes involved in the formation of satellites and ring systems, as well as understanding their stability. We also tried to underline the symbiotic relationship between rings and satellites. The different methodologies employed in this thesis can be adapted to other systems in order to bring better knowledge about the origin and fate of other satellites and rings of the Solar System.A acreção em discos circumestelares é o principal mecanismo para a formação de planetas, enquanto a formação de satélites e anéis pode ocorrer por meio de diferentes mecanismos ao redor do corpo central. O objetivo desta tese é estudar a formação e estabilidade de diferentes sistemas de satélites e anéis, em diferentes ambientes e épocas do Sistema Solar. Para isto, fiz o uso de diferentes técnicas numéricas. Os tópicos abordados na tese são: a formação dos satélites Galileanos de Júpiter em um disco circum-planetário, a formação de Fobos de Marte por meio de um mecanismo de reciclagem de material, a estabilidade de 1+N satélites co-orbitais confinando os arcos de Netuno e suas formações por meio da destruição de um satélite e a estabilidade ao redor de corpos esféricos com uma anomalia de massa. Acredita-se que os satélites Galileanos tenham se formado durante os estágios finais da formação de Júpiter em um disco circumplanetário, sendo esta estudada por meio de simulações numéricas de N-corpos. O modelo assume impactos entre satelitesimais, acreção de seixos e inclui a migração devido ao gás, amortecimento e arrasto do gás. Sob esses efeitos, os satélites migrarão em direção ao planeta, sendo a migração freada quando os satélites atingem a cavidade interna do gás ou são capturados em uma ressonância de movimento médio. No melhor sistema análogo ao Galileano, obtém-se que os pares de satélites estão em ressonâncias de movimento médio 2:1. Eu proponho que o sistema de satélites Galileanos seja um corrente ressonante primordial e que Calisto deixou a ressonância de movimento médio, sem quebrar a ressonância Laplaciana, devido à uma migração divergente causada por interações de maré. A formação de Fobos foi estudada por meio de simulações unidimensionais das interações entre disco e satélite. O modelo assume ser Fobos um satélite com baixa coesão, formado através de uma cascata de destruições e recriações de satélites em um disco de detritos ao redor de Marte. Obtenho que o mecanismo de reciclagem deve de fato ocorrer se os satélites formados no disco possuírem baixa coesão. No entanto, um anel interior ao limite de Roche de Marte e coexistindo com Fobos é sempre obtido por meio deste mecanismo. Logo, Fobos não pode ter se formado por meio do processo de reciclagem. Atendo a estabilidade de anéis, eu analiso as configurações de equilíbrio de 1+N satélites co-orbitais confinando os arcos de Netuno e obtenho diferentes configurações, com diferentes massas e número de corpos. A formação desses satélites é estudada assumindo a ruptura de um corpo ancestral no ponto Lagrangiano de uma lua. Os fragmentos da ruptura se espalham e colidem, formando o sistema de satélites co-orbitais. Neste cenário, os arcos são formados por meio de diferentes processos, sendo as colisões entre fragmentos e impactos de corpos externos com as luas já formadas, os mais atrativos destes. Por fim, utilizo a técnica da seção de Poincaré para analisar a estabilidade ao redor de um corpo esférico com uma anomalia de massa em seu equador. Variando os parâmetros do corpo central, verifico a existência de duas regiões ao redor do corpo, uma região interna caótica, na qual as partículas são perdidas, e uma região externa estável. Nesta última são identificadas ressonâncias do tipo spin-órbita, sendo obtido que as órbitas periódicas associadas à ressonâncias 1:1+p são assimétricas. Modelando Cáriclo como um objeto esférico com uma anomalia de massa, concluo que seus anéis estão na região estável, porém não estão associados à ressonância 1:3 conforme proposto na literatura. Os resultados aqui apresentados buscam difundir os processos envolvidos na formação de satélites e anéis, assim como ajudar na compreensão da estabilidade destes. Em especial, tentei salientar a simbiótica relação existente entre os satélites e anéis. As diferentes metodologias empregadas nesta tese podem ser adaptadas para outros sistemas de modo a ampliar o conhecimento a respeito da origem e destino de outros sistemas de satélites e anéis do Sistema SolarFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2018/23568-6Universidade Estadual Paulista (Unesp)Winter, Silvia Maria Giuliatti [UNESP]Universidade Estadual Paulista (Unesp)Madeira, Gustavo Oliveira2023-01-24T13:04:58Z2023-01-24T13:04:58Z2023-01-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/23892433004080051P4enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T14:38:00Zoai:repositorio.unesp.br:11449/238924Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:18:22.103549Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system Exploring models of formation and dynamic evolution of satellites and rings of the solar system |
title |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system |
spellingShingle |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system Madeira, Gustavo Oliveira Satelites Astronomia Solar System Planets - Orbits satellite formation ring formation circumplanetary disk debris disk Galilean satellites Phobos Neptune arcs Chariklo satélites Galileanos Fobos arcos de Netuno Cáriclo disco circumplanetário disco de detritos Satéllites |
title_short |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system |
title_full |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system |
title_fullStr |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system |
title_full_unstemmed |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system |
title_sort |
Exploring models of formation and dynamic evolution of satellites and rings of the solar system |
author |
Madeira, Gustavo Oliveira |
author_facet |
Madeira, Gustavo Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Winter, Silvia Maria Giuliatti [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Madeira, Gustavo Oliveira |
dc.subject.por.fl_str_mv |
Satelites Astronomia Solar System Planets - Orbits satellite formation ring formation circumplanetary disk debris disk Galilean satellites Phobos Neptune arcs Chariklo satélites Galileanos Fobos arcos de Netuno Cáriclo disco circumplanetário disco de detritos Satéllites |
topic |
Satelites Astronomia Solar System Planets - Orbits satellite formation ring formation circumplanetary disk debris disk Galilean satellites Phobos Neptune arcs Chariklo satélites Galileanos Fobos arcos de Netuno Cáriclo disco circumplanetário disco de detritos Satéllites |
description |
Accretion in a circumstellar disk is the main mechanism for the formation of planets, while the formation of satellites and rings can occur through different mechanisms around the central body. This thesis aims to study the formation and stability of different systems of satellites and rings, in different environments and epochs of the Solar System. For this, we employ different numerical techniques. The topics addressed in the thesis are: the formation of Galilean satellites of Jupiter in a circumplanetary disk, the formation of Phobos of Mars due to a material recycling mechanism, the stability of 1+N co-orbital satellites confining the Neptune arcs and their formation due to the disruption of a satellite, and stability around spherical objects with a mass anomaly. We study the Galilean satellites using N-body numerical simulations and assuming that they formed in a circumplanetary disk during the last stages of Jupiter’s formation. The model assumes impacts between satellitesimals, pebble accretion, and includes gas-driven migration, gas tidal damping, and drag. Under these effects, satellites migrate inwards stopping their migration when reaching the disk’s inner cavity or when captured in mean motion resonances. In the system that best matches the masses of the real Galilean system, pairs of adjacent satellites are obtained in 2:1 mean motion resonances. We propose that the Galilean satellites system is a primordial resonant chain and that Callisto left the resonance without breaking the Laplacian resonance via divergent migration due to tidal interactions. The formation of Phobos was analyzed using 1D simulations of disk/satellite interactions. The model assumes that Phobos is a low-cohesion satellite formed through a cascade of disruptions and re-accretions of several parent bodies in a debris disk around Mars. We find that the recycling mechanism must, in fact, take place if the debris disk gives rise to low-cohesion objects. However, if Phobos were formed by this process, it would be accompanied today by a Roche-interior ring. So Phobos cannot be the outcome of such a recycling process. Turning attention to stability of rings, we study the equilibrium configurations for 1+N co-orbital satellites confining the Neptune rings. We use N-body simulations and obtain distinct configurations of satellites, with different numbers and sizes of moonlets, capable of confining arcs. Then, the formation of these possible co-orbital satellites is analyzed assuming the disruption of an ancient body at a Lagrangian point of a moon. The disruption fragments spread out and collide to form the co-orbital system. In such a scenario, the arcs likely formed through a mixture of different processes, with impacts between fragments and meteoroid impacts with the formed moonlets being attractive possibilities. Finally, we use the Poincaré surface of section technique to analyze the stability around a spherical body with a mass anomaly at its equator. Varying the parameters of the central object, we verify the existence of two distinct regions around the body, a chaotic inner region where particles are lost and a stable outer region. In the stable region, spin-orbit resonances are identified, and we obtain that periodic orbits in 1:1+p resonances are asymmetric. Modeling Chariklo as an object with a mass anomaly, we conclude that its rings are in the stable region, but not involved in the 1:3 spin-orbit resonance, as proposed in the literature. The results presented here aim to shed light on the processes involved in the formation of satellites and ring systems, as well as understanding their stability. We also tried to underline the symbiotic relationship between rings and satellites. The different methodologies employed in this thesis can be adapted to other systems in order to bring better knowledge about the origin and fate of other satellites and rings of the Solar System. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-24T13:04:58Z 2023-01-24T13:04:58Z 2023-01-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/238924 33004080051P4 |
url |
http://hdl.handle.net/11449/238924 |
identifier_str_mv |
33004080051P4 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128495007563776 |