Exploring models of formation and dynamic evolution of satellites and rings of the solar system

Detalhes bibliográficos
Autor(a) principal: Madeira, Gustavo Oliveira
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/238924
Resumo: Accretion in a circumstellar disk is the main mechanism for the formation of planets, while the formation of satellites and rings can occur through different mechanisms around the central body. This thesis aims to study the formation and stability of different systems of satellites and rings, in different environments and epochs of the Solar System. For this, we employ different numerical techniques. The topics addressed in the thesis are: the formation of Galilean satellites of Jupiter in a circumplanetary disk, the formation of Phobos of Mars due to a material recycling mechanism, the stability of 1+N co-orbital satellites confining the Neptune arcs and their formation due to the disruption of a satellite, and stability around spherical objects with a mass anomaly. We study the Galilean satellites using N-body numerical simulations and assuming that they formed in a circumplanetary disk during the last stages of Jupiter’s formation. The model assumes impacts between satellitesimals, pebble accretion, and includes gas-driven migration, gas tidal damping, and drag. Under these effects, satellites migrate inwards stopping their migration when reaching the disk’s inner cavity or when captured in mean motion resonances. In the system that best matches the masses of the real Galilean system, pairs of adjacent satellites are obtained in 2:1 mean motion resonances. We propose that the Galilean satellites system is a primordial resonant chain and that Callisto left the resonance without breaking the Laplacian resonance via divergent migration due to tidal interactions. The formation of Phobos was analyzed using 1D simulations of disk/satellite interactions. The model assumes that Phobos is a low-cohesion satellite formed through a cascade of disruptions and re-accretions of several parent bodies in a debris disk around Mars. We find that the recycling mechanism must, in fact, take place if the debris disk gives rise to low-cohesion objects. However, if Phobos were formed by this process, it would be accompanied today by a Roche-interior ring. So Phobos cannot be the outcome of such a recycling process. Turning attention to stability of rings, we study the equilibrium configurations for 1+N co-orbital satellites confining the Neptune rings. We use N-body simulations and obtain distinct configurations of satellites, with different numbers and sizes of moonlets, capable of confining arcs. Then, the formation of these possible co-orbital satellites is analyzed assuming the disruption of an ancient body at a Lagrangian point of a moon. The disruption fragments spread out and collide to form the co-orbital system. In such a scenario, the arcs likely formed through a mixture of different processes, with impacts between fragments and meteoroid impacts with the formed moonlets being attractive possibilities. Finally, we use the Poincaré surface of section technique to analyze the stability around a spherical body with a mass anomaly at its equator. Varying the parameters of the central object, we verify the existence of two distinct regions around the body, a chaotic inner region where particles are lost and a stable outer region. In the stable region, spin-orbit resonances are identified, and we obtain that periodic orbits in 1:1+p resonances are asymmetric. Modeling Chariklo as an object with a mass anomaly, we conclude that its rings are in the stable region, but not involved in the 1:3 spin-orbit resonance, as proposed in the literature. The results presented here aim to shed light on the processes involved in the formation of satellites and ring systems, as well as understanding their stability. We also tried to underline the symbiotic relationship between rings and satellites. The different methodologies employed in this thesis can be adapted to other systems in order to bring better knowledge about the origin and fate of other satellites and rings of the Solar System.
id UNSP_205ce31646075338a290a15841953976
oai_identifier_str oai:repositorio.unesp.br:11449/238924
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Exploring models of formation and dynamic evolution of satellites and rings of the solar systemExploring models of formation and dynamic evolution of satellites and rings of the solar systemSatelitesAstronomiaSolar SystemPlanets - Orbitssatellite formationring formationcircumplanetary diskdebris diskGalilean satellitesPhobosNeptune arcsChariklosatélites GalileanosFobosarcos de NetunoCáriclodisco circumplanetáriodisco de detritosSatéllitesAccretion in a circumstellar disk is the main mechanism for the formation of planets, while the formation of satellites and rings can occur through different mechanisms around the central body. This thesis aims to study the formation and stability of different systems of satellites and rings, in different environments and epochs of the Solar System. For this, we employ different numerical techniques. The topics addressed in the thesis are: the formation of Galilean satellites of Jupiter in a circumplanetary disk, the formation of Phobos of Mars due to a material recycling mechanism, the stability of 1+N co-orbital satellites confining the Neptune arcs and their formation due to the disruption of a satellite, and stability around spherical objects with a mass anomaly. We study the Galilean satellites using N-body numerical simulations and assuming that they formed in a circumplanetary disk during the last stages of Jupiter’s formation. The model assumes impacts between satellitesimals, pebble accretion, and includes gas-driven migration, gas tidal damping, and drag. Under these effects, satellites migrate inwards stopping their migration when reaching the disk’s inner cavity or when captured in mean motion resonances. In the system that best matches the masses of the real Galilean system, pairs of adjacent satellites are obtained in 2:1 mean motion resonances. We propose that the Galilean satellites system is a primordial resonant chain and that Callisto left the resonance without breaking the Laplacian resonance via divergent migration due to tidal interactions. The formation of Phobos was analyzed using 1D simulations of disk/satellite interactions. The model assumes that Phobos is a low-cohesion satellite formed through a cascade of disruptions and re-accretions of several parent bodies in a debris disk around Mars. We find that the recycling mechanism must, in fact, take place if the debris disk gives rise to low-cohesion objects. However, if Phobos were formed by this process, it would be accompanied today by a Roche-interior ring. So Phobos cannot be the outcome of such a recycling process. Turning attention to stability of rings, we study the equilibrium configurations for 1+N co-orbital satellites confining the Neptune rings. We use N-body simulations and obtain distinct configurations of satellites, with different numbers and sizes of moonlets, capable of confining arcs. Then, the formation of these possible co-orbital satellites is analyzed assuming the disruption of an ancient body at a Lagrangian point of a moon. The disruption fragments spread out and collide to form the co-orbital system. In such a scenario, the arcs likely formed through a mixture of different processes, with impacts between fragments and meteoroid impacts with the formed moonlets being attractive possibilities. Finally, we use the Poincaré surface of section technique to analyze the stability around a spherical body with a mass anomaly at its equator. Varying the parameters of the central object, we verify the existence of two distinct regions around the body, a chaotic inner region where particles are lost and a stable outer region. In the stable region, spin-orbit resonances are identified, and we obtain that periodic orbits in 1:1+p resonances are asymmetric. Modeling Chariklo as an object with a mass anomaly, we conclude that its rings are in the stable region, but not involved in the 1:3 spin-orbit resonance, as proposed in the literature. The results presented here aim to shed light on the processes involved in the formation of satellites and ring systems, as well as understanding their stability. We also tried to underline the symbiotic relationship between rings and satellites. The different methodologies employed in this thesis can be adapted to other systems in order to bring better knowledge about the origin and fate of other satellites and rings of the Solar System.A acreção em discos circumestelares é o principal mecanismo para a formação de planetas, enquanto a formação de satélites e anéis pode ocorrer por meio de diferentes mecanismos ao redor do corpo central. O objetivo desta tese é estudar a formação e estabilidade de diferentes sistemas de satélites e anéis, em diferentes ambientes e épocas do Sistema Solar. Para isto, fiz o uso de diferentes técnicas numéricas. Os tópicos abordados na tese são: a formação dos satélites Galileanos de Júpiter em um disco circum-planetário, a formação de Fobos de Marte por meio de um mecanismo de reciclagem de material, a estabilidade de 1+N satélites co-orbitais confinando os arcos de Netuno e suas formações por meio da destruição de um satélite e a estabilidade ao redor de corpos esféricos com uma anomalia de massa. Acredita-se que os satélites Galileanos tenham se formado durante os estágios finais da formação de Júpiter em um disco circumplanetário, sendo esta estudada por meio de simulações numéricas de N-corpos. O modelo assume impactos entre satelitesimais, acreção de seixos e inclui a migração devido ao gás, amortecimento e arrasto do gás. Sob esses efeitos, os satélites migrarão em direção ao planeta, sendo a migração freada quando os satélites atingem a cavidade interna do gás ou são capturados em uma ressonância de movimento médio. No melhor sistema análogo ao Galileano, obtém-se que os pares de satélites estão em ressonâncias de movimento médio 2:1. Eu proponho que o sistema de satélites Galileanos seja um corrente ressonante primordial e que Calisto deixou a ressonância de movimento médio, sem quebrar a ressonância Laplaciana, devido à uma migração divergente causada por interações de maré. A formação de Fobos foi estudada por meio de simulações unidimensionais das interações entre disco e satélite. O modelo assume ser Fobos um satélite com baixa coesão, formado através de uma cascata de destruições e recriações de satélites em um disco de detritos ao redor de Marte. Obtenho que o mecanismo de reciclagem deve de fato ocorrer se os satélites formados no disco possuírem baixa coesão. No entanto, um anel interior ao limite de Roche de Marte e coexistindo com Fobos é sempre obtido por meio deste mecanismo. Logo, Fobos não pode ter se formado por meio do processo de reciclagem. Atendo a estabilidade de anéis, eu analiso as configurações de equilíbrio de 1+N satélites co-orbitais confinando os arcos de Netuno e obtenho diferentes configurações, com diferentes massas e número de corpos. A formação desses satélites é estudada assumindo a ruptura de um corpo ancestral no ponto Lagrangiano de uma lua. Os fragmentos da ruptura se espalham e colidem, formando o sistema de satélites co-orbitais. Neste cenário, os arcos são formados por meio de diferentes processos, sendo as colisões entre fragmentos e impactos de corpos externos com as luas já formadas, os mais atrativos destes. Por fim, utilizo a técnica da seção de Poincaré para analisar a estabilidade ao redor de um corpo esférico com uma anomalia de massa em seu equador. Variando os parâmetros do corpo central, verifico a existência de duas regiões ao redor do corpo, uma região interna caótica, na qual as partículas são perdidas, e uma região externa estável. Nesta última são identificadas ressonâncias do tipo spin-órbita, sendo obtido que as órbitas periódicas associadas à ressonâncias 1:1+p são assimétricas. Modelando Cáriclo como um objeto esférico com uma anomalia de massa, concluo que seus anéis estão na região estável, porém não estão associados à ressonância 1:3 conforme proposto na literatura. Os resultados aqui apresentados buscam difundir os processos envolvidos na formação de satélites e anéis, assim como ajudar na compreensão da estabilidade destes. Em especial, tentei salientar a simbiótica relação existente entre os satélites e anéis. As diferentes metodologias empregadas nesta tese podem ser adaptadas para outros sistemas de modo a ampliar o conhecimento a respeito da origem e destino de outros sistemas de satélites e anéis do Sistema SolarFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2018/23568-6Universidade Estadual Paulista (Unesp)Winter, Silvia Maria Giuliatti [UNESP]Universidade Estadual Paulista (Unesp)Madeira, Gustavo Oliveira2023-01-24T13:04:58Z2023-01-24T13:04:58Z2023-01-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/23892433004080051P4enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T14:38:00Zoai:repositorio.unesp.br:11449/238924Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:18:22.103549Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Exploring models of formation and dynamic evolution of satellites and rings of the solar system
Exploring models of formation and dynamic evolution of satellites and rings of the solar system
title Exploring models of formation and dynamic evolution of satellites and rings of the solar system
spellingShingle Exploring models of formation and dynamic evolution of satellites and rings of the solar system
Madeira, Gustavo Oliveira
Satelites
Astronomia
Solar System
Planets - Orbits
satellite formation
ring formation
circumplanetary disk
debris disk
Galilean satellites
Phobos
Neptune arcs
Chariklo
satélites Galileanos
Fobos
arcos de Netuno
Cáriclo
disco circumplanetário
disco de detritos
Satéllites
title_short Exploring models of formation and dynamic evolution of satellites and rings of the solar system
title_full Exploring models of formation and dynamic evolution of satellites and rings of the solar system
title_fullStr Exploring models of formation and dynamic evolution of satellites and rings of the solar system
title_full_unstemmed Exploring models of formation and dynamic evolution of satellites and rings of the solar system
title_sort Exploring models of formation and dynamic evolution of satellites and rings of the solar system
author Madeira, Gustavo Oliveira
author_facet Madeira, Gustavo Oliveira
author_role author
dc.contributor.none.fl_str_mv Winter, Silvia Maria Giuliatti [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Madeira, Gustavo Oliveira
dc.subject.por.fl_str_mv Satelites
Astronomia
Solar System
Planets - Orbits
satellite formation
ring formation
circumplanetary disk
debris disk
Galilean satellites
Phobos
Neptune arcs
Chariklo
satélites Galileanos
Fobos
arcos de Netuno
Cáriclo
disco circumplanetário
disco de detritos
Satéllites
topic Satelites
Astronomia
Solar System
Planets - Orbits
satellite formation
ring formation
circumplanetary disk
debris disk
Galilean satellites
Phobos
Neptune arcs
Chariklo
satélites Galileanos
Fobos
arcos de Netuno
Cáriclo
disco circumplanetário
disco de detritos
Satéllites
description Accretion in a circumstellar disk is the main mechanism for the formation of planets, while the formation of satellites and rings can occur through different mechanisms around the central body. This thesis aims to study the formation and stability of different systems of satellites and rings, in different environments and epochs of the Solar System. For this, we employ different numerical techniques. The topics addressed in the thesis are: the formation of Galilean satellites of Jupiter in a circumplanetary disk, the formation of Phobos of Mars due to a material recycling mechanism, the stability of 1+N co-orbital satellites confining the Neptune arcs and their formation due to the disruption of a satellite, and stability around spherical objects with a mass anomaly. We study the Galilean satellites using N-body numerical simulations and assuming that they formed in a circumplanetary disk during the last stages of Jupiter’s formation. The model assumes impacts between satellitesimals, pebble accretion, and includes gas-driven migration, gas tidal damping, and drag. Under these effects, satellites migrate inwards stopping their migration when reaching the disk’s inner cavity or when captured in mean motion resonances. In the system that best matches the masses of the real Galilean system, pairs of adjacent satellites are obtained in 2:1 mean motion resonances. We propose that the Galilean satellites system is a primordial resonant chain and that Callisto left the resonance without breaking the Laplacian resonance via divergent migration due to tidal interactions. The formation of Phobos was analyzed using 1D simulations of disk/satellite interactions. The model assumes that Phobos is a low-cohesion satellite formed through a cascade of disruptions and re-accretions of several parent bodies in a debris disk around Mars. We find that the recycling mechanism must, in fact, take place if the debris disk gives rise to low-cohesion objects. However, if Phobos were formed by this process, it would be accompanied today by a Roche-interior ring. So Phobos cannot be the outcome of such a recycling process. Turning attention to stability of rings, we study the equilibrium configurations for 1+N co-orbital satellites confining the Neptune rings. We use N-body simulations and obtain distinct configurations of satellites, with different numbers and sizes of moonlets, capable of confining arcs. Then, the formation of these possible co-orbital satellites is analyzed assuming the disruption of an ancient body at a Lagrangian point of a moon. The disruption fragments spread out and collide to form the co-orbital system. In such a scenario, the arcs likely formed through a mixture of different processes, with impacts between fragments and meteoroid impacts with the formed moonlets being attractive possibilities. Finally, we use the Poincaré surface of section technique to analyze the stability around a spherical body with a mass anomaly at its equator. Varying the parameters of the central object, we verify the existence of two distinct regions around the body, a chaotic inner region where particles are lost and a stable outer region. In the stable region, spin-orbit resonances are identified, and we obtain that periodic orbits in 1:1+p resonances are asymmetric. Modeling Chariklo as an object with a mass anomaly, we conclude that its rings are in the stable region, but not involved in the 1:3 spin-orbit resonance, as proposed in the literature. The results presented here aim to shed light on the processes involved in the formation of satellites and ring systems, as well as understanding their stability. We also tried to underline the symbiotic relationship between rings and satellites. The different methodologies employed in this thesis can be adapted to other systems in order to bring better knowledge about the origin and fate of other satellites and rings of the Solar System.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-24T13:04:58Z
2023-01-24T13:04:58Z
2023-01-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/238924
33004080051P4
url http://hdl.handle.net/11449/238924
identifier_str_mv 33004080051P4
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128495007563776