Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.foodcont.2021.108068 http://hdl.handle.net/11449/206051 |
Resumo: | Tomatoes are widely consumed worldwide, and the soluble solid content (SSC) is one of the most important quality parameters for the commercialization of fresh tomatoes, mainly in the salad group. In this regard, partial least square models for intact tomatoes SSC were developed using a portable F-750 Vis-near-infrared (NIR) with Zeiss MMS1-NIR spectrometer in an interactance geometry. Thus, tomatoes from five regions (states of Goiás, Bahia, Santa Catarina, Minas Gerais, and São Paulo) were collected weekly from November 2018 to November 2019, with a total sample number of 2.085, divided into three populations, two for calibration and one for prediction. The best partial least squares regression prediction model was obtained using the Vis-NIR spectral region of 840–1050 nm with Orthogonal Signal Correction (OSC) pre-treatment applied. The calibration population standard deviation (SD) was 0.52%, and for the prediction population, the SD was 0.56%. Low root mean square error cross-calibration of 0.32%, and root mean square error prediction of 0.32% were achieved. The models were able to discriminate low from high values and vice versa. |
id |
UNSP_2083ee72205b75f3de7036fb4bc871c1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/206051 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopyPartial least squares regressionPCAQualitySolanum lycopersicum L.Tomatoes are widely consumed worldwide, and the soluble solid content (SSC) is one of the most important quality parameters for the commercialization of fresh tomatoes, mainly in the salad group. In this regard, partial least square models for intact tomatoes SSC were developed using a portable F-750 Vis-near-infrared (NIR) with Zeiss MMS1-NIR spectrometer in an interactance geometry. Thus, tomatoes from five regions (states of Goiás, Bahia, Santa Catarina, Minas Gerais, and São Paulo) were collected weekly from November 2018 to November 2019, with a total sample number of 2.085, divided into three populations, two for calibration and one for prediction. The best partial least squares regression prediction model was obtained using the Vis-NIR spectral region of 840–1050 nm with Orthogonal Signal Correction (OSC) pre-treatment applied. The calibration population standard deviation (SD) was 0.52%, and for the prediction population, the SD was 0.56%. Low root mean square error cross-calibration of 0.32%, and root mean square error prediction of 0.32% were achieved. The models were able to discriminate low from high values and vice versa.Ministério da Ciência, Tecnologia, Inovações e ComunicaçõesConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de Goiás Escola de Agronomia Programa de Pós-Graduação Em Agronomia Goiânia – GO Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Federal de Goiás Escola de Agronomia Goiânia – GO Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Federal de Goiás Escola de Agronomia Departamento de Horticultura Goiânia – GO Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Federal de Goiás Escola de Agronomia Departamento de Engenharia de Alimentos Goiânia – GO. Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane S/nUniversidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane S/nCNPq: 406617/2018-0Universidade Federal de Goiás (UFG)Universidade Estadual Paulista (Unesp)Brito, Annelisa Arruda deCampos, FernandaNascimento, Abadia dos ReisCorrêa, Gilmarcos de CarvalhoSilva, Flávio Alves daTeixeira, Gustavo Henrique de Almeida [UNESP]Cunha Júnior, Luis Carlos2021-06-25T10:25:45Z2021-06-25T10:25:45Z2021-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.foodcont.2021.108068Food Control, v. 126.0956-7135http://hdl.handle.net/11449/20605110.1016/j.foodcont.2021.1080682-s2.0-85102598910Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFood Controlinfo:eu-repo/semantics/openAccess2021-10-22T20:42:55Zoai:repositorio.unesp.br:11449/206051Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:20:33.975098Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy |
title |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy |
spellingShingle |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy Brito, Annelisa Arruda de Partial least squares regression PCA Quality Solanum lycopersicum L. |
title_short |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy |
title_full |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy |
title_fullStr |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy |
title_full_unstemmed |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy |
title_sort |
Determination of soluble solid content in market tomatoes using near-infrared spectroscopy |
author |
Brito, Annelisa Arruda de |
author_facet |
Brito, Annelisa Arruda de Campos, Fernanda Nascimento, Abadia dos Reis Corrêa, Gilmarcos de Carvalho Silva, Flávio Alves da Teixeira, Gustavo Henrique de Almeida [UNESP] Cunha Júnior, Luis Carlos |
author_role |
author |
author2 |
Campos, Fernanda Nascimento, Abadia dos Reis Corrêa, Gilmarcos de Carvalho Silva, Flávio Alves da Teixeira, Gustavo Henrique de Almeida [UNESP] Cunha Júnior, Luis Carlos |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Goiás (UFG) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Brito, Annelisa Arruda de Campos, Fernanda Nascimento, Abadia dos Reis Corrêa, Gilmarcos de Carvalho Silva, Flávio Alves da Teixeira, Gustavo Henrique de Almeida [UNESP] Cunha Júnior, Luis Carlos |
dc.subject.por.fl_str_mv |
Partial least squares regression PCA Quality Solanum lycopersicum L. |
topic |
Partial least squares regression PCA Quality Solanum lycopersicum L. |
description |
Tomatoes are widely consumed worldwide, and the soluble solid content (SSC) is one of the most important quality parameters for the commercialization of fresh tomatoes, mainly in the salad group. In this regard, partial least square models for intact tomatoes SSC were developed using a portable F-750 Vis-near-infrared (NIR) with Zeiss MMS1-NIR spectrometer in an interactance geometry. Thus, tomatoes from five regions (states of Goiás, Bahia, Santa Catarina, Minas Gerais, and São Paulo) were collected weekly from November 2018 to November 2019, with a total sample number of 2.085, divided into three populations, two for calibration and one for prediction. The best partial least squares regression prediction model was obtained using the Vis-NIR spectral region of 840–1050 nm with Orthogonal Signal Correction (OSC) pre-treatment applied. The calibration population standard deviation (SD) was 0.52%, and for the prediction population, the SD was 0.56%. Low root mean square error cross-calibration of 0.32%, and root mean square error prediction of 0.32% were achieved. The models were able to discriminate low from high values and vice versa. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:25:45Z 2021-06-25T10:25:45Z 2021-08-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.foodcont.2021.108068 Food Control, v. 126. 0956-7135 http://hdl.handle.net/11449/206051 10.1016/j.foodcont.2021.108068 2-s2.0-85102598910 |
url |
http://dx.doi.org/10.1016/j.foodcont.2021.108068 http://hdl.handle.net/11449/206051 |
identifier_str_mv |
Food Control, v. 126. 0956-7135 10.1016/j.foodcont.2021.108068 2-s2.0-85102598910 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Food Control |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128349791322112 |