Determination of soluble solid content in market tomatoes using near-infrared spectroscopy

Detalhes bibliográficos
Autor(a) principal: Brito, Annelisa Arruda de
Data de Publicação: 2021
Outros Autores: Campos, Fernanda, Nascimento, Abadia dos Reis, Corrêa, Gilmarcos de Carvalho, Silva, Flávio Alves da, Teixeira, Gustavo Henrique de Almeida [UNESP], Cunha Júnior, Luis Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.foodcont.2021.108068
http://hdl.handle.net/11449/206051
Resumo: Tomatoes are widely consumed worldwide, and the soluble solid content (SSC) is one of the most important quality parameters for the commercialization of fresh tomatoes, mainly in the salad group. In this regard, partial least square models for intact tomatoes SSC were developed using a portable F-750 Vis-near-infrared (NIR) with Zeiss MMS1-NIR spectrometer in an interactance geometry. Thus, tomatoes from five regions (states of Goiás, Bahia, Santa Catarina, Minas Gerais, and São Paulo) were collected weekly from November 2018 to November 2019, with a total sample number of 2.085, divided into three populations, two for calibration and one for prediction. The best partial least squares regression prediction model was obtained using the Vis-NIR spectral region of 840–1050 nm with Orthogonal Signal Correction (OSC) pre-treatment applied. The calibration population standard deviation (SD) was 0.52%, and for the prediction population, the SD was 0.56%. Low root mean square error cross-calibration of 0.32%, and root mean square error prediction of 0.32% were achieved. The models were able to discriminate low from high values and vice versa.
id UNSP_2083ee72205b75f3de7036fb4bc871c1
oai_identifier_str oai:repositorio.unesp.br:11449/206051
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Determination of soluble solid content in market tomatoes using near-infrared spectroscopyPartial least squares regressionPCAQualitySolanum lycopersicum L.Tomatoes are widely consumed worldwide, and the soluble solid content (SSC) is one of the most important quality parameters for the commercialization of fresh tomatoes, mainly in the salad group. In this regard, partial least square models for intact tomatoes SSC were developed using a portable F-750 Vis-near-infrared (NIR) with Zeiss MMS1-NIR spectrometer in an interactance geometry. Thus, tomatoes from five regions (states of Goiás, Bahia, Santa Catarina, Minas Gerais, and São Paulo) were collected weekly from November 2018 to November 2019, with a total sample number of 2.085, divided into three populations, two for calibration and one for prediction. The best partial least squares regression prediction model was obtained using the Vis-NIR spectral region of 840–1050 nm with Orthogonal Signal Correction (OSC) pre-treatment applied. The calibration population standard deviation (SD) was 0.52%, and for the prediction population, the SD was 0.56%. Low root mean square error cross-calibration of 0.32%, and root mean square error prediction of 0.32% were achieved. The models were able to discriminate low from high values and vice versa.Ministério da Ciência, Tecnologia, Inovações e ComunicaçõesConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de Goiás Escola de Agronomia Programa de Pós-Graduação Em Agronomia Goiânia – GO Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Federal de Goiás Escola de Agronomia Goiânia – GO Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Federal de Goiás Escola de Agronomia Departamento de Horticultura Goiânia – GO Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Federal de Goiás Escola de Agronomia Departamento de Engenharia de Alimentos Goiânia – GO. Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, SamambaiaUniversidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane S/nUniversidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane S/nCNPq: 406617/2018-0Universidade Federal de Goiás (UFG)Universidade Estadual Paulista (Unesp)Brito, Annelisa Arruda deCampos, FernandaNascimento, Abadia dos ReisCorrêa, Gilmarcos de CarvalhoSilva, Flávio Alves daTeixeira, Gustavo Henrique de Almeida [UNESP]Cunha Júnior, Luis Carlos2021-06-25T10:25:45Z2021-06-25T10:25:45Z2021-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.foodcont.2021.108068Food Control, v. 126.0956-7135http://hdl.handle.net/11449/20605110.1016/j.foodcont.2021.1080682-s2.0-85102598910Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFood Controlinfo:eu-repo/semantics/openAccess2021-10-22T20:42:55Zoai:repositorio.unesp.br:11449/206051Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:20:33.975098Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
title Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
spellingShingle Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
Brito, Annelisa Arruda de
Partial least squares regression
PCA
Quality
Solanum lycopersicum L.
title_short Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
title_full Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
title_fullStr Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
title_full_unstemmed Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
title_sort Determination of soluble solid content in market tomatoes using near-infrared spectroscopy
author Brito, Annelisa Arruda de
author_facet Brito, Annelisa Arruda de
Campos, Fernanda
Nascimento, Abadia dos Reis
Corrêa, Gilmarcos de Carvalho
Silva, Flávio Alves da
Teixeira, Gustavo Henrique de Almeida [UNESP]
Cunha Júnior, Luis Carlos
author_role author
author2 Campos, Fernanda
Nascimento, Abadia dos Reis
Corrêa, Gilmarcos de Carvalho
Silva, Flávio Alves da
Teixeira, Gustavo Henrique de Almeida [UNESP]
Cunha Júnior, Luis Carlos
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Goiás (UFG)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Brito, Annelisa Arruda de
Campos, Fernanda
Nascimento, Abadia dos Reis
Corrêa, Gilmarcos de Carvalho
Silva, Flávio Alves da
Teixeira, Gustavo Henrique de Almeida [UNESP]
Cunha Júnior, Luis Carlos
dc.subject.por.fl_str_mv Partial least squares regression
PCA
Quality
Solanum lycopersicum L.
topic Partial least squares regression
PCA
Quality
Solanum lycopersicum L.
description Tomatoes are widely consumed worldwide, and the soluble solid content (SSC) is one of the most important quality parameters for the commercialization of fresh tomatoes, mainly in the salad group. In this regard, partial least square models for intact tomatoes SSC were developed using a portable F-750 Vis-near-infrared (NIR) with Zeiss MMS1-NIR spectrometer in an interactance geometry. Thus, tomatoes from five regions (states of Goiás, Bahia, Santa Catarina, Minas Gerais, and São Paulo) were collected weekly from November 2018 to November 2019, with a total sample number of 2.085, divided into three populations, two for calibration and one for prediction. The best partial least squares regression prediction model was obtained using the Vis-NIR spectral region of 840–1050 nm with Orthogonal Signal Correction (OSC) pre-treatment applied. The calibration population standard deviation (SD) was 0.52%, and for the prediction population, the SD was 0.56%. Low root mean square error cross-calibration of 0.32%, and root mean square error prediction of 0.32% were achieved. The models were able to discriminate low from high values and vice versa.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:25:45Z
2021-06-25T10:25:45Z
2021-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.foodcont.2021.108068
Food Control, v. 126.
0956-7135
http://hdl.handle.net/11449/206051
10.1016/j.foodcont.2021.108068
2-s2.0-85102598910
url http://dx.doi.org/10.1016/j.foodcont.2021.108068
http://hdl.handle.net/11449/206051
identifier_str_mv Food Control, v. 126.
0956-7135
10.1016/j.foodcont.2021.108068
2-s2.0-85102598910
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Food Control
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128349791322112