Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials

Detalhes bibliográficos
Autor(a) principal: Marana, Naiara L.
Data de Publicação: 2022
Outros Autores: Sambrano, Julio R. [UNESP], Casassa, Silvia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/nano12234343
http://hdl.handle.net/11449/246445
Resumo: Ternary BNC nanotubes were modeled and characterized through a periodic density functional theory approach with the aim of investigating the influence on the structural, electronic, mechanical, and transport properties of the quantity and pattern of doping. The main energy band gap is easily tunable as a function of the BN percentage, the mechanical stability is generally preserved, and an interesting piezoelectric character emerges in the BNC structures. Moreover, C@(BN)1−xCx double-wall presents promising values of the thermoelectric coefficients due to the combined lowering of the thermal conductivity and increase of charge carriers. Computed results are in qualitative agreement with the little experimental evidence and therefore can provide insights on an atomic scale of the real samples and direct the synthesis towards increasingly performing hybrid nanomaterials.
id UNSP_2166467f254bb6e4cafa10270aa27de6
oai_identifier_str oai:repositorio.unesp.br:11449/246445
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric MaterialsBN dopingDFTmultiwall nanotubesthermoelectricsTernary BNC nanotubes were modeled and characterized through a periodic density functional theory approach with the aim of investigating the influence on the structural, electronic, mechanical, and transport properties of the quantity and pattern of doping. The main energy band gap is easily tunable as a function of the BN percentage, the mechanical stability is generally preserved, and an interesting piezoelectric character emerges in the BNC structures. Moreover, C@(BN)1−xCx double-wall presents promising values of the thermoelectric coefficients due to the combined lowering of the thermal conductivity and increase of charge carriers. Computed results are in qualitative agreement with the little experimental evidence and therefore can provide insights on an atomic scale of the real samples and direct the synthesis towards increasingly performing hybrid nanomaterials.Theoretical Group of Chemistry Chemistry Department Torino UniversityModeling and Molecular Simulations Group São Paulo State University UNESP, SPModeling and Molecular Simulations Group São Paulo State University UNESP, SPTorino UniversityUniversidade Estadual Paulista (UNESP)Marana, Naiara L.Sambrano, Julio R. [UNESP]Casassa, Silvia2023-07-29T12:41:07Z2023-07-29T12:41:07Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/nano12234343Nanomaterials, v. 12, n. 23, 2022.2079-4991http://hdl.handle.net/11449/24644510.3390/nano122343432-s2.0-85143665835Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNanomaterialsinfo:eu-repo/semantics/openAccess2023-07-29T12:41:07Zoai:repositorio.unesp.br:11449/246445Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:59:01.168460Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
title Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
spellingShingle Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
Marana, Naiara L.
BN doping
DFT
multiwall nanotubes
thermoelectrics
title_short Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
title_full Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
title_fullStr Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
title_full_unstemmed Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
title_sort Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials
author Marana, Naiara L.
author_facet Marana, Naiara L.
Sambrano, Julio R. [UNESP]
Casassa, Silvia
author_role author
author2 Sambrano, Julio R. [UNESP]
Casassa, Silvia
author2_role author
author
dc.contributor.none.fl_str_mv Torino University
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Marana, Naiara L.
Sambrano, Julio R. [UNESP]
Casassa, Silvia
dc.subject.por.fl_str_mv BN doping
DFT
multiwall nanotubes
thermoelectrics
topic BN doping
DFT
multiwall nanotubes
thermoelectrics
description Ternary BNC nanotubes were modeled and characterized through a periodic density functional theory approach with the aim of investigating the influence on the structural, electronic, mechanical, and transport properties of the quantity and pattern of doping. The main energy band gap is easily tunable as a function of the BN percentage, the mechanical stability is generally preserved, and an interesting piezoelectric character emerges in the BNC structures. Moreover, C@(BN)1−xCx double-wall presents promising values of the thermoelectric coefficients due to the combined lowering of the thermal conductivity and increase of charge carriers. Computed results are in qualitative agreement with the little experimental evidence and therefore can provide insights on an atomic scale of the real samples and direct the synthesis towards increasingly performing hybrid nanomaterials.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-01
2023-07-29T12:41:07Z
2023-07-29T12:41:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/nano12234343
Nanomaterials, v. 12, n. 23, 2022.
2079-4991
http://hdl.handle.net/11449/246445
10.3390/nano12234343
2-s2.0-85143665835
url http://dx.doi.org/10.3390/nano12234343
http://hdl.handle.net/11449/246445
identifier_str_mv Nanomaterials, v. 12, n. 23, 2022.
2079-4991
10.3390/nano12234343
2-s2.0-85143665835
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nanomaterials
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129569336590336