Scaling investigation of Fermi acceleration on a dissipative bouncer model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevE.78.056205 http://hdl.handle.net/11449/225343 |
Resumo: | The phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society. |
id |
UNSP_21baa00ddaf9c17a37ba0fd629ed1f62 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/225343 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Scaling investigation of Fermi acceleration on a dissipative bouncer modelThe phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society.Departamento de Estatística, Matemática Aplicada e Computação IGCE Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, CEP 13506-900, Rio Claro, São PauloDepartamento de Estatística, Matemática Aplicada e Computação IGCE Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, CEP 13506-900, Rio Claro, São PauloUniversidade Estadual Paulista (UNESP)Livorati, André Luis Prando [UNESP]Ladeira, Denis Gouvêa [UNESP]Leonel, Edson D. [UNESP]2022-04-28T20:46:17Z2022-04-28T20:46:17Z2008-11-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.78.056205Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008.1539-37551550-2376http://hdl.handle.net/11449/22534310.1103/PhysRevE.78.0562052-s2.0-56649121678Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsinfo:eu-repo/semantics/openAccess2022-04-28T20:46:17Zoai:repositorio.unesp.br:11449/225343Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:08:50.232406Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Scaling investigation of Fermi acceleration on a dissipative bouncer model |
title |
Scaling investigation of Fermi acceleration on a dissipative bouncer model |
spellingShingle |
Scaling investigation of Fermi acceleration on a dissipative bouncer model Livorati, André Luis Prando [UNESP] |
title_short |
Scaling investigation of Fermi acceleration on a dissipative bouncer model |
title_full |
Scaling investigation of Fermi acceleration on a dissipative bouncer model |
title_fullStr |
Scaling investigation of Fermi acceleration on a dissipative bouncer model |
title_full_unstemmed |
Scaling investigation of Fermi acceleration on a dissipative bouncer model |
title_sort |
Scaling investigation of Fermi acceleration on a dissipative bouncer model |
author |
Livorati, André Luis Prando [UNESP] |
author_facet |
Livorati, André Luis Prando [UNESP] Ladeira, Denis Gouvêa [UNESP] Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Ladeira, Denis Gouvêa [UNESP] Leonel, Edson D. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Livorati, André Luis Prando [UNESP] Ladeira, Denis Gouvêa [UNESP] Leonel, Edson D. [UNESP] |
description |
The phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-11-11 2022-04-28T20:46:17Z 2022-04-28T20:46:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevE.78.056205 Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008. 1539-3755 1550-2376 http://hdl.handle.net/11449/225343 10.1103/PhysRevE.78.056205 2-s2.0-56649121678 |
url |
http://dx.doi.org/10.1103/PhysRevE.78.056205 http://hdl.handle.net/11449/225343 |
identifier_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008. 1539-3755 1550-2376 10.1103/PhysRevE.78.056205 2-s2.0-56649121678 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129589789065216 |