Scaling investigation of Fermi acceleration on a dissipative bouncer model

Detalhes bibliográficos
Autor(a) principal: Livorati, André Luis Prando [UNESP]
Data de Publicação: 2008
Outros Autores: Ladeira, Denis Gouvêa [UNESP], Leonel, Edson D. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevE.78.056205
http://hdl.handle.net/11449/225343
Resumo: The phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society.
id UNSP_21baa00ddaf9c17a37ba0fd629ed1f62
oai_identifier_str oai:repositorio.unesp.br:11449/225343
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Scaling investigation of Fermi acceleration on a dissipative bouncer modelThe phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society.Departamento de Estatística, Matemática Aplicada e Computação IGCE Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, CEP 13506-900, Rio Claro, São PauloDepartamento de Estatística, Matemática Aplicada e Computação IGCE Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, CEP 13506-900, Rio Claro, São PauloUniversidade Estadual Paulista (UNESP)Livorati, André Luis Prando [UNESP]Ladeira, Denis Gouvêa [UNESP]Leonel, Edson D. [UNESP]2022-04-28T20:46:17Z2022-04-28T20:46:17Z2008-11-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.78.056205Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008.1539-37551550-2376http://hdl.handle.net/11449/22534310.1103/PhysRevE.78.0562052-s2.0-56649121678Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsinfo:eu-repo/semantics/openAccess2022-04-28T20:46:17Zoai:repositorio.unesp.br:11449/225343Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:08:50.232406Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Scaling investigation of Fermi acceleration on a dissipative bouncer model
title Scaling investigation of Fermi acceleration on a dissipative bouncer model
spellingShingle Scaling investigation of Fermi acceleration on a dissipative bouncer model
Livorati, André Luis Prando [UNESP]
title_short Scaling investigation of Fermi acceleration on a dissipative bouncer model
title_full Scaling investigation of Fermi acceleration on a dissipative bouncer model
title_fullStr Scaling investigation of Fermi acceleration on a dissipative bouncer model
title_full_unstemmed Scaling investigation of Fermi acceleration on a dissipative bouncer model
title_sort Scaling investigation of Fermi acceleration on a dissipative bouncer model
author Livorati, André Luis Prando [UNESP]
author_facet Livorati, André Luis Prando [UNESP]
Ladeira, Denis Gouvêa [UNESP]
Leonel, Edson D. [UNESP]
author_role author
author2 Ladeira, Denis Gouvêa [UNESP]
Leonel, Edson D. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Livorati, André Luis Prando [UNESP]
Ladeira, Denis Gouvêa [UNESP]
Leonel, Edson D. [UNESP]
description The phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society.
publishDate 2008
dc.date.none.fl_str_mv 2008-11-11
2022-04-28T20:46:17Z
2022-04-28T20:46:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevE.78.056205
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008.
1539-3755
1550-2376
http://hdl.handle.net/11449/225343
10.1103/PhysRevE.78.056205
2-s2.0-56649121678
url http://dx.doi.org/10.1103/PhysRevE.78.056205
http://hdl.handle.net/11449/225343
identifier_str_mv Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008.
1539-3755
1550-2376
10.1103/PhysRevE.78.056205
2-s2.0-56649121678
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129589789065216