Fuel spray modeling for application in internal combustion engines

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Mateus Dias [UNESP]
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/183102
Resumo: Direct injection spark ignition (DISI) engines aim at reducing specific fuel consumption and achieving the strict emission standards in state of the art internal combustion engines. Therefore, in this work the goal is to develop code for simulations of the internal flow in DISI engines, as well as the phenomenon of fuel spray injection into the combustion chamber using a Lagrangian-Eulerian approach for representing the multiphase flow, and Large-eddy Simulations (LES) for modeling the turbulence of the continuum medium by means of the open-source CFD library OpenFOAM. In order to validate the obtained results and the developed models, experimental data from the Darmstadt optical engine, and the non-reactive “Spray G” gasoline injection case, along with the reactive “Spray A” case from the Engine Combustion Network (ECN) will be employed. Finally, a novel open-source solver will be proposed to simulate the Darmstadt optical engine in motored and fired operation under stratified mixture condition, using data compiled by the Darmstadt Engine Workshop (DEW) for validation. Moreover, a deep learning framework is presented to train an artificial neural network (ANN) with the engine LES data generated in this work, in order to make predictions of the small scale turbulence behavior.
id UNSP_222aaa3c92f2130dd75a0a5e26b3695c
oai_identifier_str oai:repositorio.unesp.br:11449/183102
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fuel spray modeling for application in internal combustion enginesModelagem de spray combustível para aplicação em motores de combustão internaSprayCFDLESInternal Combustion EngineLagrangian-Eulerian approachOpenFOAMANNMotores de combustão internaFluidodinâmica computacionalInteligência artificialDirect injection spark ignition (DISI) engines aim at reducing specific fuel consumption and achieving the strict emission standards in state of the art internal combustion engines. Therefore, in this work the goal is to develop code for simulations of the internal flow in DISI engines, as well as the phenomenon of fuel spray injection into the combustion chamber using a Lagrangian-Eulerian approach for representing the multiphase flow, and Large-eddy Simulations (LES) for modeling the turbulence of the continuum medium by means of the open-source CFD library OpenFOAM. In order to validate the obtained results and the developed models, experimental data from the Darmstadt optical engine, and the non-reactive “Spray G” gasoline injection case, along with the reactive “Spray A” case from the Engine Combustion Network (ECN) will be employed. Finally, a novel open-source solver will be proposed to simulate the Darmstadt optical engine in motored and fired operation under stratified mixture condition, using data compiled by the Darmstadt Engine Workshop (DEW) for validation. Moreover, a deep learning framework is presented to train an artificial neural network (ANN) with the engine LES data generated in this work, in order to make predictions of the small scale turbulence behavior.Motores de ignição a centelha com injeção direta (direct injection spark ignition engines, DISI engines) visam reduzir o consumo específico de combustível e respeitar os restritos níveis de emissão em motores de combustão interna de última geração. Assim, pretende-se com este trabalho desenvolver código para simulação do escoamento interno em motores DISI, assim como os fenômenos de injeção de combustível no interior da câmara de combustão utilizando uma abordagem Lagrangeana-Euleriana para representação do escoamento multifásico e Simulação de Grandes Escalas (Large-eddy simulation, LES) para a modelagem da turbulência no meio contínuo, por intermédio da biblioteca CFD de código aberto OpenFOAM. De modo a validar os resultados e os modelos desenvolvidos, dados experimentais serão utilizados, obtidos do motor óptico de Darmstadt, e do caso de teste de injeção de gasolina não-reativo “Spray G”, juntamente com o caso reativo “Spray A” da Rede de Combustão em Motores (Engine Combustion Network, ECN). Enfim, um novo código aberto será proposto para simular o motor óptico de Darmstadt em condições de escoamento a frio (sem combustão) e com combustão em condição de mistura estratificada, usando dados compilados pelo Workshop do Motor de Darmstadt (Darmstadt Engine Workshop, DEW) para validação. Além disso, uma abordagem de aprendizado profundo (deep learning) será apresentada para treinar uma rede neural artificial (artificial neural network, ANN) com dados de simulação LES de motores gerados neste trabalho, para realizar predições sobre o comportamento das pequenas escalas de turbulênciaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2015/10299-9 (BP-DR) e 2017/04619-6 (BEPE)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001Universidade Estadual Paulista (Unesp)Balestieri, José Antônio Perrella [UNESP]Zanardi, Mauricio Araújo [UNESP]Bimbato, Alex Mendonça [UNESP]Universidade Estadual Paulista (Unesp)Ribeiro, Mateus Dias [UNESP]2019-08-01T15:38:09Z2019-08-01T15:38:09Z2019-07-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/18310200091892133004080027P6enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T13:32:17Zoai:repositorio.unesp.br:11449/183102Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:09:18.599104Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fuel spray modeling for application in internal combustion engines
Modelagem de spray combustível para aplicação em motores de combustão interna
title Fuel spray modeling for application in internal combustion engines
spellingShingle Fuel spray modeling for application in internal combustion engines
Ribeiro, Mateus Dias [UNESP]
Spray
CFD
LES
Internal Combustion Engine
Lagrangian-Eulerian approach
OpenFOAM
ANN
Motores de combustão interna
Fluidodinâmica computacional
Inteligência artificial
title_short Fuel spray modeling for application in internal combustion engines
title_full Fuel spray modeling for application in internal combustion engines
title_fullStr Fuel spray modeling for application in internal combustion engines
title_full_unstemmed Fuel spray modeling for application in internal combustion engines
title_sort Fuel spray modeling for application in internal combustion engines
author Ribeiro, Mateus Dias [UNESP]
author_facet Ribeiro, Mateus Dias [UNESP]
author_role author
dc.contributor.none.fl_str_mv Balestieri, José Antônio Perrella [UNESP]
Zanardi, Mauricio Araújo [UNESP]
Bimbato, Alex Mendonça [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ribeiro, Mateus Dias [UNESP]
dc.subject.por.fl_str_mv Spray
CFD
LES
Internal Combustion Engine
Lagrangian-Eulerian approach
OpenFOAM
ANN
Motores de combustão interna
Fluidodinâmica computacional
Inteligência artificial
topic Spray
CFD
LES
Internal Combustion Engine
Lagrangian-Eulerian approach
OpenFOAM
ANN
Motores de combustão interna
Fluidodinâmica computacional
Inteligência artificial
description Direct injection spark ignition (DISI) engines aim at reducing specific fuel consumption and achieving the strict emission standards in state of the art internal combustion engines. Therefore, in this work the goal is to develop code for simulations of the internal flow in DISI engines, as well as the phenomenon of fuel spray injection into the combustion chamber using a Lagrangian-Eulerian approach for representing the multiphase flow, and Large-eddy Simulations (LES) for modeling the turbulence of the continuum medium by means of the open-source CFD library OpenFOAM. In order to validate the obtained results and the developed models, experimental data from the Darmstadt optical engine, and the non-reactive “Spray G” gasoline injection case, along with the reactive “Spray A” case from the Engine Combustion Network (ECN) will be employed. Finally, a novel open-source solver will be proposed to simulate the Darmstadt optical engine in motored and fired operation under stratified mixture condition, using data compiled by the Darmstadt Engine Workshop (DEW) for validation. Moreover, a deep learning framework is presented to train an artificial neural network (ANN) with the engine LES data generated in this work, in order to make predictions of the small scale turbulence behavior.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-01T15:38:09Z
2019-08-01T15:38:09Z
2019-07-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/183102
000918921
33004080027P6
url http://hdl.handle.net/11449/183102
identifier_str_mv 000918921
33004080027P6
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128469403435008