Rank diffusion for context-based image retrieval
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1145/2911996.2912060 http://hdl.handle.net/11449/168817 |
Resumo: | This paper presents an efficient diffusion-based re-ranking approach. The proposed method propagates contextual information defined in terms of top-ranked objects of ranked lists in a diffusion process. That makes the method suitable for large scale real-world collections. Experiments were conducted considering public image collections, several descriptors, and comparisons with state-of-the-art methods. Experimental results demonstrate that the proposed method provides high effectiveness gains with low computational costs. |
id |
UNSP_23bede04d6554de0d8db3ab0efba8b8f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/168817 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Rank diffusion for context-based image retrievalContent-based image retrievalRank diffusion processUnsupervised distance learningThis paper presents an efficient diffusion-based re-ranking approach. The proposed method propagates contextual information defined in terms of top-ranked objects of ranked lists in a diffusion process. That makes the method suitable for large scale real-world collections. Experiments were conducted considering public image collections, several descriptors, and comparisons with state-of-the-art methods. Experimental results demonstrate that the proposed method provides high effectiveness gains with low computational costs.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Dept. of Statistic Applied Math. and Computing Universidade Estadual Paulista (UNESP)Recod Lab - Institute of Computing University of Campinas (UNICAMP)Dept. of Statistic Applied Math. and Computing Universidade Estadual Paulista (UNESP)FAPESP: 2013/08645-0FAPESP: 2013/50169-1CNPq: 306580/2012-8CNPq: 484254/2012-0Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Pedronette, Daniel Carlos Guimarães [UNESP]Torres, Ricardo Da S.2018-12-11T16:43:12Z2018-12-11T16:43:12Z2016-06-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject321-325http://dx.doi.org/10.1145/2911996.2912060ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, p. 321-325.http://hdl.handle.net/11449/16881710.1145/2911996.29120602-s2.0-84978708542Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrievalinfo:eu-repo/semantics/openAccess2021-10-23T21:46:58Zoai:repositorio.unesp.br:11449/168817Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:18:03.416681Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Rank diffusion for context-based image retrieval |
title |
Rank diffusion for context-based image retrieval |
spellingShingle |
Rank diffusion for context-based image retrieval Pedronette, Daniel Carlos Guimarães [UNESP] Content-based image retrieval Rank diffusion process Unsupervised distance learning |
title_short |
Rank diffusion for context-based image retrieval |
title_full |
Rank diffusion for context-based image retrieval |
title_fullStr |
Rank diffusion for context-based image retrieval |
title_full_unstemmed |
Rank diffusion for context-based image retrieval |
title_sort |
Rank diffusion for context-based image retrieval |
author |
Pedronette, Daniel Carlos Guimarães [UNESP] |
author_facet |
Pedronette, Daniel Carlos Guimarães [UNESP] Torres, Ricardo Da S. |
author_role |
author |
author2 |
Torres, Ricardo Da S. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Pedronette, Daniel Carlos Guimarães [UNESP] Torres, Ricardo Da S. |
dc.subject.por.fl_str_mv |
Content-based image retrieval Rank diffusion process Unsupervised distance learning |
topic |
Content-based image retrieval Rank diffusion process Unsupervised distance learning |
description |
This paper presents an efficient diffusion-based re-ranking approach. The proposed method propagates contextual information defined in terms of top-ranked objects of ranked lists in a diffusion process. That makes the method suitable for large scale real-world collections. Experiments were conducted considering public image collections, several descriptors, and comparisons with state-of-the-art methods. Experimental results demonstrate that the proposed method provides high effectiveness gains with low computational costs. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-06 2018-12-11T16:43:12Z 2018-12-11T16:43:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1145/2911996.2912060 ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, p. 321-325. http://hdl.handle.net/11449/168817 10.1145/2911996.2912060 2-s2.0-84978708542 |
url |
http://dx.doi.org/10.1145/2911996.2912060 http://hdl.handle.net/11449/168817 |
identifier_str_mv |
ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, p. 321-325. 10.1145/2911996.2912060 2-s2.0-84978708542 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
321-325 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129185644806144 |