Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/10236198.2022.2119140 http://hdl.handle.net/11449/237854 |
Resumo: | We study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained. |
id |
UNSP_2420dbfb1ba0dc9b2a112afb126e0999 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/237854 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equationsBivariate orthogonal polynomialsFreud orthogonal polynomialsThree term relationsMatrix Painleve: type difference equationsWe study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FEDER/Junta de AndaluciaMCINFEDERIMAG-Maria de Maeztu grantUniv Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv Fed Triangulo Mineiro UFTM, Inst Ciencias Tecnol & Exatas ICTE, Dept Matemat, Uberaba, MG, BrazilUniv Granada, Fac Ciencias, Inst Matemat IMAG, Granada, SpainUniv Granada, Fac Ciencias, Dept Matemat Aplicada, Granada, SpainUniv Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilCAPES: 88887.310463/2018-00CAPES: 88887.575407/2020-00FEDER/Junta de Andalucia: A-FQM-246-UGR20MCIN: PGC2018-094932B-I00IMAG-Maria de Maeztu grant: CEX2020-00 1105-MTaylor & Francis LtdUniversidade Estadual Paulista (UNESP)Univ Fed Triangulo Mineiro UFTMUniv GranadaBracciali, Cleonice F. [UNESP]Costa, Glalco S.Perez, Teresa E.2022-11-30T13:46:46Z2022-11-30T13:46:46Z2022-09-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21http://dx.doi.org/10.1080/10236198.2022.2119140Journal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022.1023-6198http://hdl.handle.net/11449/23785410.1080/10236198.2022.2119140WOS:000852168300001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Difference Equations And Applicationsinfo:eu-repo/semantics/openAccess2022-11-30T13:46:47Zoai:repositorio.unesp.br:11449/237854Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:27:41.560788Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations |
title |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations |
spellingShingle |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations Bracciali, Cleonice F. [UNESP] Bivariate orthogonal polynomials Freud orthogonal polynomials Three term relations Matrix Painleve: type difference equations |
title_short |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations |
title_full |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations |
title_fullStr |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations |
title_full_unstemmed |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations |
title_sort |
Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations |
author |
Bracciali, Cleonice F. [UNESP] |
author_facet |
Bracciali, Cleonice F. [UNESP] Costa, Glalco S. Perez, Teresa E. |
author_role |
author |
author2 |
Costa, Glalco S. Perez, Teresa E. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Univ Fed Triangulo Mineiro UFTM Univ Granada |
dc.contributor.author.fl_str_mv |
Bracciali, Cleonice F. [UNESP] Costa, Glalco S. Perez, Teresa E. |
dc.subject.por.fl_str_mv |
Bivariate orthogonal polynomials Freud orthogonal polynomials Three term relations Matrix Painleve: type difference equations |
topic |
Bivariate orthogonal polynomials Freud orthogonal polynomials Three term relations Matrix Painleve: type difference equations |
description |
We study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-30T13:46:46Z 2022-11-30T13:46:46Z 2022-09-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/10236198.2022.2119140 Journal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022. 1023-6198 http://hdl.handle.net/11449/237854 10.1080/10236198.2022.2119140 WOS:000852168300001 |
url |
http://dx.doi.org/10.1080/10236198.2022.2119140 http://hdl.handle.net/11449/237854 |
identifier_str_mv |
Journal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022. 1023-6198 10.1080/10236198.2022.2119140 WOS:000852168300001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal Of Difference Equations And Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128514710306816 |