Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations

Detalhes bibliográficos
Autor(a) principal: Bracciali, Cleonice F. [UNESP]
Data de Publicação: 2022
Outros Autores: Costa, Glalco S., Perez, Teresa E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/10236198.2022.2119140
http://hdl.handle.net/11449/237854
Resumo: We study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained.
id UNSP_2420dbfb1ba0dc9b2a112afb126e0999
oai_identifier_str oai:repositorio.unesp.br:11449/237854
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Two variable Freud orthogonal polynomials and matrix Painleve-type difference equationsBivariate orthogonal polynomialsFreud orthogonal polynomialsThree term relationsMatrix Painleve: type difference equationsWe study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FEDER/Junta de AndaluciaMCINFEDERIMAG-Maria de Maeztu grantUniv Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv Fed Triangulo Mineiro UFTM, Inst Ciencias Tecnol & Exatas ICTE, Dept Matemat, Uberaba, MG, BrazilUniv Granada, Fac Ciencias, Inst Matemat IMAG, Granada, SpainUniv Granada, Fac Ciencias, Dept Matemat Aplicada, Granada, SpainUniv Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilCAPES: 88887.310463/2018-00CAPES: 88887.575407/2020-00FEDER/Junta de Andalucia: A-FQM-246-UGR20MCIN: PGC2018-094932B-I00IMAG-Maria de Maeztu grant: CEX2020-00 1105-MTaylor & Francis LtdUniversidade Estadual Paulista (UNESP)Univ Fed Triangulo Mineiro UFTMUniv GranadaBracciali, Cleonice F. [UNESP]Costa, Glalco S.Perez, Teresa E.2022-11-30T13:46:46Z2022-11-30T13:46:46Z2022-09-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21http://dx.doi.org/10.1080/10236198.2022.2119140Journal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022.1023-6198http://hdl.handle.net/11449/23785410.1080/10236198.2022.2119140WOS:000852168300001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Difference Equations And Applicationsinfo:eu-repo/semantics/openAccess2022-11-30T13:46:47Zoai:repositorio.unesp.br:11449/237854Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:27:41.560788Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
title Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
spellingShingle Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
Bracciali, Cleonice F. [UNESP]
Bivariate orthogonal polynomials
Freud orthogonal polynomials
Three term relations
Matrix Painleve: type difference equations
title_short Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
title_full Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
title_fullStr Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
title_full_unstemmed Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
title_sort Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
author Bracciali, Cleonice F. [UNESP]
author_facet Bracciali, Cleonice F. [UNESP]
Costa, Glalco S.
Perez, Teresa E.
author_role author
author2 Costa, Glalco S.
Perez, Teresa E.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Univ Fed Triangulo Mineiro UFTM
Univ Granada
dc.contributor.author.fl_str_mv Bracciali, Cleonice F. [UNESP]
Costa, Glalco S.
Perez, Teresa E.
dc.subject.por.fl_str_mv Bivariate orthogonal polynomials
Freud orthogonal polynomials
Three term relations
Matrix Painleve: type difference equations
topic Bivariate orthogonal polynomials
Freud orthogonal polynomials
Three term relations
Matrix Painleve: type difference equations
description We study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-30T13:46:46Z
2022-11-30T13:46:46Z
2022-09-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/10236198.2022.2119140
Journal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022.
1023-6198
http://hdl.handle.net/11449/237854
10.1080/10236198.2022.2119140
WOS:000852168300001
url http://dx.doi.org/10.1080/10236198.2022.2119140
http://hdl.handle.net/11449/237854
identifier_str_mv Journal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022.
1023-6198
10.1080/10236198.2022.2119140
WOS:000852168300001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of Difference Equations And Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 21
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128514710306816