Prediction of genomic breeding values for reproductive traits in Nellore heifers

Detalhes bibliográficos
Autor(a) principal: Costa, Raphael Bermal [UNESP]
Data de Publicação: 2019
Outros Autores: Irano, Natalia [UNESP], Solar Diaz, Lara Del Pilar [UNESP], Takada, Luciana [UNESP], Hermisdorff, Isis da Costa, Carvalheiro, Roberto [UNESP], Baldi, Fernando [UNESP], Oliveira, Henrique Nunes de [UNESP], Tonhati, Humberto [UNESP], Albuquerque, Lucia Galva de [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.theriogenology.2018.10.014
http://hdl.handle.net/11449/186587
Resumo: The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESC pi, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESC pi showed higher predictive ability to estimate SNP effects and GEBV for all traits. (C) 2018 Elsevier Inc. All rights reserved.
id UNSP_248c6f9cc3f75435fdc2d2fe416678a1
oai_identifier_str oai:repositorio.unesp.br:11449/186587
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Prediction of genomic breeding values for reproductive traits in Nellore heifersGenomic selectionPredicative abilityReproductive efficiencySNPThe objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESC pi, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESC pi showed higher predictive ability to estimate SNP effects and GEBV for all traits. (C) 2018 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, BrazilUniv Fed Bahia, Ave Adhemar de Barros 500, BR-40170110 Salvador, BA, BrazilSao Paulo State Univ, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, BrazilFAPESP: :2009/16118-5Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal da Bahia (UFBA)Costa, Raphael Bermal [UNESP]Irano, Natalia [UNESP]Solar Diaz, Lara Del Pilar [UNESP]Takada, Luciana [UNESP]Hermisdorff, Isis da CostaCarvalheiro, Roberto [UNESP]Baldi, Fernando [UNESP]Oliveira, Henrique Nunes de [UNESP]Tonhati, Humberto [UNESP]Albuquerque, Lucia Galva de [UNESP]2019-10-05T08:00:48Z2019-10-05T08:00:48Z2019-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12-17http://dx.doi.org/10.1016/j.theriogenology.2018.10.014Theriogenology. New York: Elsevier Science Inc, v. 125, p. 12-17, 2019.0093-691Xhttp://hdl.handle.net/11449/18658710.1016/j.theriogenology.2018.10.014WOS:000455972500003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTheriogenologyinfo:eu-repo/semantics/openAccess2024-06-07T18:41:18Zoai:repositorio.unesp.br:11449/186587Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:32:33.873912Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Prediction of genomic breeding values for reproductive traits in Nellore heifers
title Prediction of genomic breeding values for reproductive traits in Nellore heifers
spellingShingle Prediction of genomic breeding values for reproductive traits in Nellore heifers
Costa, Raphael Bermal [UNESP]
Genomic selection
Predicative ability
Reproductive efficiency
SNP
title_short Prediction of genomic breeding values for reproductive traits in Nellore heifers
title_full Prediction of genomic breeding values for reproductive traits in Nellore heifers
title_fullStr Prediction of genomic breeding values for reproductive traits in Nellore heifers
title_full_unstemmed Prediction of genomic breeding values for reproductive traits in Nellore heifers
title_sort Prediction of genomic breeding values for reproductive traits in Nellore heifers
author Costa, Raphael Bermal [UNESP]
author_facet Costa, Raphael Bermal [UNESP]
Irano, Natalia [UNESP]
Solar Diaz, Lara Del Pilar [UNESP]
Takada, Luciana [UNESP]
Hermisdorff, Isis da Costa
Carvalheiro, Roberto [UNESP]
Baldi, Fernando [UNESP]
Oliveira, Henrique Nunes de [UNESP]
Tonhati, Humberto [UNESP]
Albuquerque, Lucia Galva de [UNESP]
author_role author
author2 Irano, Natalia [UNESP]
Solar Diaz, Lara Del Pilar [UNESP]
Takada, Luciana [UNESP]
Hermisdorff, Isis da Costa
Carvalheiro, Roberto [UNESP]
Baldi, Fernando [UNESP]
Oliveira, Henrique Nunes de [UNESP]
Tonhati, Humberto [UNESP]
Albuquerque, Lucia Galva de [UNESP]
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal da Bahia (UFBA)
dc.contributor.author.fl_str_mv Costa, Raphael Bermal [UNESP]
Irano, Natalia [UNESP]
Solar Diaz, Lara Del Pilar [UNESP]
Takada, Luciana [UNESP]
Hermisdorff, Isis da Costa
Carvalheiro, Roberto [UNESP]
Baldi, Fernando [UNESP]
Oliveira, Henrique Nunes de [UNESP]
Tonhati, Humberto [UNESP]
Albuquerque, Lucia Galva de [UNESP]
dc.subject.por.fl_str_mv Genomic selection
Predicative ability
Reproductive efficiency
SNP
topic Genomic selection
Predicative ability
Reproductive efficiency
SNP
description The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESC pi, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESC pi showed higher predictive ability to estimate SNP effects and GEBV for all traits. (C) 2018 Elsevier Inc. All rights reserved.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-05T08:00:48Z
2019-10-05T08:00:48Z
2019-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.theriogenology.2018.10.014
Theriogenology. New York: Elsevier Science Inc, v. 125, p. 12-17, 2019.
0093-691X
http://hdl.handle.net/11449/186587
10.1016/j.theriogenology.2018.10.014
WOS:000455972500003
url http://dx.doi.org/10.1016/j.theriogenology.2018.10.014
http://hdl.handle.net/11449/186587
identifier_str_mv Theriogenology. New York: Elsevier Science Inc, v. 125, p. 12-17, 2019.
0093-691X
10.1016/j.theriogenology.2018.10.014
WOS:000455972500003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Theriogenology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12-17
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128823022059520