Prediction of genomic breeding values for reproductive traits in Nellore heifers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.theriogenology.2018.10.014 http://hdl.handle.net/11449/186587 |
Resumo: | The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESC pi, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESC pi showed higher predictive ability to estimate SNP effects and GEBV for all traits. (C) 2018 Elsevier Inc. All rights reserved. |
id |
UNSP_248c6f9cc3f75435fdc2d2fe416678a1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186587 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Prediction of genomic breeding values for reproductive traits in Nellore heifersGenomic selectionPredicative abilityReproductive efficiencySNPThe objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESC pi, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESC pi showed higher predictive ability to estimate SNP effects and GEBV for all traits. (C) 2018 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, BrazilUniv Fed Bahia, Ave Adhemar de Barros 500, BR-40170110 Salvador, BA, BrazilSao Paulo State Univ, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, BrazilFAPESP: :2009/16118-5Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal da Bahia (UFBA)Costa, Raphael Bermal [UNESP]Irano, Natalia [UNESP]Solar Diaz, Lara Del Pilar [UNESP]Takada, Luciana [UNESP]Hermisdorff, Isis da CostaCarvalheiro, Roberto [UNESP]Baldi, Fernando [UNESP]Oliveira, Henrique Nunes de [UNESP]Tonhati, Humberto [UNESP]Albuquerque, Lucia Galva de [UNESP]2019-10-05T08:00:48Z2019-10-05T08:00:48Z2019-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12-17http://dx.doi.org/10.1016/j.theriogenology.2018.10.014Theriogenology. New York: Elsevier Science Inc, v. 125, p. 12-17, 2019.0093-691Xhttp://hdl.handle.net/11449/18658710.1016/j.theriogenology.2018.10.014WOS:000455972500003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTheriogenologyinfo:eu-repo/semantics/openAccess2024-06-07T18:41:18Zoai:repositorio.unesp.br:11449/186587Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:32:33.873912Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Prediction of genomic breeding values for reproductive traits in Nellore heifers |
title |
Prediction of genomic breeding values for reproductive traits in Nellore heifers |
spellingShingle |
Prediction of genomic breeding values for reproductive traits in Nellore heifers Costa, Raphael Bermal [UNESP] Genomic selection Predicative ability Reproductive efficiency SNP |
title_short |
Prediction of genomic breeding values for reproductive traits in Nellore heifers |
title_full |
Prediction of genomic breeding values for reproductive traits in Nellore heifers |
title_fullStr |
Prediction of genomic breeding values for reproductive traits in Nellore heifers |
title_full_unstemmed |
Prediction of genomic breeding values for reproductive traits in Nellore heifers |
title_sort |
Prediction of genomic breeding values for reproductive traits in Nellore heifers |
author |
Costa, Raphael Bermal [UNESP] |
author_facet |
Costa, Raphael Bermal [UNESP] Irano, Natalia [UNESP] Solar Diaz, Lara Del Pilar [UNESP] Takada, Luciana [UNESP] Hermisdorff, Isis da Costa Carvalheiro, Roberto [UNESP] Baldi, Fernando [UNESP] Oliveira, Henrique Nunes de [UNESP] Tonhati, Humberto [UNESP] Albuquerque, Lucia Galva de [UNESP] |
author_role |
author |
author2 |
Irano, Natalia [UNESP] Solar Diaz, Lara Del Pilar [UNESP] Takada, Luciana [UNESP] Hermisdorff, Isis da Costa Carvalheiro, Roberto [UNESP] Baldi, Fernando [UNESP] Oliveira, Henrique Nunes de [UNESP] Tonhati, Humberto [UNESP] Albuquerque, Lucia Galva de [UNESP] |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal da Bahia (UFBA) |
dc.contributor.author.fl_str_mv |
Costa, Raphael Bermal [UNESP] Irano, Natalia [UNESP] Solar Diaz, Lara Del Pilar [UNESP] Takada, Luciana [UNESP] Hermisdorff, Isis da Costa Carvalheiro, Roberto [UNESP] Baldi, Fernando [UNESP] Oliveira, Henrique Nunes de [UNESP] Tonhati, Humberto [UNESP] Albuquerque, Lucia Galva de [UNESP] |
dc.subject.por.fl_str_mv |
Genomic selection Predicative ability Reproductive efficiency SNP |
topic |
Genomic selection Predicative ability Reproductive efficiency SNP |
description |
The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESC pi, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESC pi showed higher predictive ability to estimate SNP effects and GEBV for all traits. (C) 2018 Elsevier Inc. All rights reserved. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-05T08:00:48Z 2019-10-05T08:00:48Z 2019-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.theriogenology.2018.10.014 Theriogenology. New York: Elsevier Science Inc, v. 125, p. 12-17, 2019. 0093-691X http://hdl.handle.net/11449/186587 10.1016/j.theriogenology.2018.10.014 WOS:000455972500003 |
url |
http://dx.doi.org/10.1016/j.theriogenology.2018.10.014 http://hdl.handle.net/11449/186587 |
identifier_str_mv |
Theriogenology. New York: Elsevier Science Inc, v. 125, p. 12-17, 2019. 0093-691X 10.1016/j.theriogenology.2018.10.014 WOS:000455972500003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Theriogenology |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12-17 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128823022059520 |