Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/INDUSCON51756.2021.9529630 http://hdl.handle.net/11449/222496 |
Resumo: | We propose an autonomous energy wireless sensor node for monitoring rotation machines condition. The thermal energy dissipated during normal operation of the motor can be harvested to power an ultra low power wireless sensor. The harvested energy is stored in supercapacitors instead of lithium-ion battery, providing an extended life for the energy storage element and being able to handle high energy radio transmission pulses. The proposed system may be used on early fault diagnosis through pervasive data collection of machines condition. The collected data can provide a maintenance schedule programming with low impact in plant operation, reducing unexpected production stop due motors failures. |
id |
UNSP_2548fd4581bb4f48a084d108a19fe9cd |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/222496 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0Autonomous energy wireless sensorEarly fault diagnosisEnergy harvestingPreventive maintenanceSupercapacitorsUltra-low-powerWe propose an autonomous energy wireless sensor node for monitoring rotation machines condition. The thermal energy dissipated during normal operation of the motor can be harvested to power an ultra low power wireless sensor. The harvested energy is stored in supercapacitors instead of lithium-ion battery, providing an extended life for the energy storage element and being able to handle high energy radio transmission pulses. The proposed system may be used on early fault diagnosis through pervasive data collection of machines condition. The collected data can provide a maintenance schedule programming with low impact in plant operation, reducing unexpected production stop due motors failures.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)University of CampinasFederal Institute of São PauloTECHPLUSSao Paulo State University (UNESP)Sao Paulo State University (UNESP)FAPESP: 2017/16053-7Universidade Estadual de Campinas (UNICAMP)Federal Institute of São PauloTECHPLUSUniversidade Estadual Paulista (UNESP)dos Santos, Adelson D.de Brito, Silvio C.Martins, Anderson V.Silva, Filipe FigueredoMorais, Flávio [UNESP]2022-04-28T19:44:57Z2022-04-28T19:44:57Z2021-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject694-697http://dx.doi.org/10.1109/INDUSCON51756.2021.95296302021 14th IEEE International Conference on Industry Applications, INDUSCON 2021 - Proceedings, p. 694-697.http://hdl.handle.net/11449/22249610.1109/INDUSCON51756.2021.95296302-s2.0-85115834690Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2021 14th IEEE International Conference on Industry Applications, INDUSCON 2021 - Proceedingsinfo:eu-repo/semantics/openAccess2022-04-28T19:44:57Zoai:repositorio.unesp.br:11449/222496Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:58:05.749311Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 |
title |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 |
spellingShingle |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 dos Santos, Adelson D. Autonomous energy wireless sensor Early fault diagnosis Energy harvesting Preventive maintenance Supercapacitors Ultra-low-power |
title_short |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 |
title_full |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 |
title_fullStr |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 |
title_full_unstemmed |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 |
title_sort |
Thermoelectric energy harvesting on rotation machines for wireless sensor network in industry 4.0 |
author |
dos Santos, Adelson D. |
author_facet |
dos Santos, Adelson D. de Brito, Silvio C. Martins, Anderson V. Silva, Filipe Figueredo Morais, Flávio [UNESP] |
author_role |
author |
author2 |
de Brito, Silvio C. Martins, Anderson V. Silva, Filipe Figueredo Morais, Flávio [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Federal Institute of São Paulo TECHPLUS Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
dos Santos, Adelson D. de Brito, Silvio C. Martins, Anderson V. Silva, Filipe Figueredo Morais, Flávio [UNESP] |
dc.subject.por.fl_str_mv |
Autonomous energy wireless sensor Early fault diagnosis Energy harvesting Preventive maintenance Supercapacitors Ultra-low-power |
topic |
Autonomous energy wireless sensor Early fault diagnosis Energy harvesting Preventive maintenance Supercapacitors Ultra-low-power |
description |
We propose an autonomous energy wireless sensor node for monitoring rotation machines condition. The thermal energy dissipated during normal operation of the motor can be harvested to power an ultra low power wireless sensor. The harvested energy is stored in supercapacitors instead of lithium-ion battery, providing an extended life for the energy storage element and being able to handle high energy radio transmission pulses. The proposed system may be used on early fault diagnosis through pervasive data collection of machines condition. The collected data can provide a maintenance schedule programming with low impact in plant operation, reducing unexpected production stop due motors failures. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-15 2022-04-28T19:44:57Z 2022-04-28T19:44:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/INDUSCON51756.2021.9529630 2021 14th IEEE International Conference on Industry Applications, INDUSCON 2021 - Proceedings, p. 694-697. http://hdl.handle.net/11449/222496 10.1109/INDUSCON51756.2021.9529630 2-s2.0-85115834690 |
url |
http://dx.doi.org/10.1109/INDUSCON51756.2021.9529630 http://hdl.handle.net/11449/222496 |
identifier_str_mv |
2021 14th IEEE International Conference on Industry Applications, INDUSCON 2021 - Proceedings, p. 694-697. 10.1109/INDUSCON51756.2021.9529630 2-s2.0-85115834690 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2021 14th IEEE International Conference on Industry Applications, INDUSCON 2021 - Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
694-697 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128297446408192 |