Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks

Detalhes bibliográficos
Autor(a) principal: Cheng, Ting-Yun
Data de Publicação: 2021
Outros Autores: Conselice, Christopher J., Aragón-Salamanca, Alfonso, Aguena, M., Allam, S., Andrade-Oliveira, F. [UNESP], Annis, J., Bluck, A. F.L., Brooks, D., Burke, D. L., Kind, M. Carrasco, Carretero, J., Choi, A., Costanzi, M., da Costa, L. N., Pereira, M. E.S., de Vicente, J., Diehl, H. T., Drlica-Wagner, A., Eckert, K., Everett, S., Evrard, A. E., Ferrero, I., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Maia, M. A.G., March, M., Menanteau, F., Miquel, R., Morgan, R., Paz-Chinchón, F., Pieres, A., Malagón, A.A. Plazas, Roodman, A., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E.C., Tarle, G., Thomas, D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1093/mnras/stab2142
http://hdl.handle.net/11449/229480
Resumo: We present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i < 18) at low redshift (z < 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i < 21, and redshifts z < 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i < 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set.
id UNSP_25cd324e350e3d08ee3e260efc8fafef
oai_identifier_str oai:repositorio.unesp.br:11449/229480
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networksCataloguesGalaxies: structureMethods: data analysisMethods: observationalWe present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i < 18) at low redshift (z < 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i < 21, and redshifts z < 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i < 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set.Centre of Extragalactic Astronomy Durham University, Stockton RoadSchool of Physics and Astronomy University of Nottingham University ParkJodrell Bank Centre for Astrophysics University of Manchester, Oxford RoadDepartamento de Física Matemática Instituto de Física Universidade de São Paulo, CP 66318, SPLaboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, RJFermi National Accelerator Laboratory, PO Box 500Instituto de Física Teórica Universidade Estadual PaulistaCavendish Laboratory Astrophysics Group University of Cambridge, Madingley RoadKavli Institute for Cosmology University of Cambridge, Madingley RoadDepartment of Physics & Astronomy University College London, Gower StreetKavli Institute for Particle Astrophysics & Cosmology Stanford University, PO Box 2450SLAC National Accelerator LaboratoryCenter for Astrophysical Surveys National Center for Supercomputing Applications, 1205 West Clark StreetDepartment of Astronomy University of Illinois at Urbana–Champaign, 1002 W. Green StreetInstitut de Física d’Altes Energies (IFAE) Barcelona Institute of Science and Technology Campus UABCenter for Cosmology and Astro-Particle Physics Ohio State UniversityAstronomy Unit Department of Physics University of Trieste, Via Tiepolo 11INAF – Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11Institute for Fundamental Physics of the Universe, Via Beirut 2Observatório Nacional, Rua Gal. José Cristino 77Department of Physics University of MichiganCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT)Department of Astronomy and Astrophysics University of ChicagoKavli Institute for Cosmological Physics University of ChicagoDepartment of Physics and Astronomy University of PennsylvaniaSanta Cruz Institute for Particle PhysicsDepartment of Astronomy University of MichiganInstitute of Theoretical Astrophysics University of Oslo, PO Box 1029 BlindernInstitut d’Estudis Espacials de Catalunya (IEEC)Institute of Space Sciences (ICE CSIC) Campus UAB, Carrer de Can Magrans, s/nInstituto de Fisica Teorica UAM/CSIC Universidad Autonoma de MadridInstitute of Astronomy University of Cambridge, Madingley RoadDepartment of Physics Stanford University, 382 Via Pueblo MallSchool of Mathematics and Physics University of QueenslandDepartment of Physics Ohio State UniversityCenter for Astrophysics Harvard & Smithsonian, 60 Garden StreetDepartment of Astronomy/Steward Observatory University of Arizona, 933 North Cherry AvenueAustralian Astronomical Optics Macquarie UniversityLowell Observatory, 1400 Mars Hill RoadInstitució Catalana de Recerca i Estudis AvançatsPhysics Department University of Wisconsin–Madison, 2320 Chamberlin Hall, 1150 University AvenueDepartment of Astrophysical Sciences Princeton University Peyton HallSchool of Physics and Astronomy University of SouthamptonComputer Science and Mathematics Division Oak Ridge National LaboratoryInstitute of Cosmology and Gravitation University of PortsmouthInstituto de Física Teórica Universidade Estadual PaulistaDurham UniversityUniversity ParkUniversity of ManchesterUniversidade de São Paulo (USP)Laboratório Interinstitucional de e-Astronomia – LIneAFermi National Accelerator LaboratoryUniversidade Estadual Paulista (UNESP)University of CambridgeUniversity College LondonStanford UniversitySLAC National Accelerator LaboratoryNational Center for Supercomputing ApplicationsUniversity of Illinois at Urbana–ChampaignBarcelona Institute of Science and TechnologyOhio State UniversityUniversity of TriesteINAF – Osservatorio Astronomico di TriesteInstitute for Fundamental Physics of the UniverseObservatório NacionalUniversity of MichiganMedioambientales y Tecnológicas (CIEMAT)University of ChicagoUniversity of PennsylvaniaSanta Cruz Institute for Particle PhysicsUniversity of OsloInstitut d’Estudis Espacials de Catalunya (IEEC)CSIC)Universidad Autonoma de MadridUniversity of QueenslandHarvard & SmithsonianUniversity of ArizonaMacquarie UniversityLowell ObservatoryInstitució Catalana de Recerca i Estudis AvançatsUniversity of Wisconsin–MadisonPeyton HallUniversity of SouthamptonOak Ridge National LaboratoryUniversity of PortsmouthCheng, Ting-YunConselice, Christopher J.Aragón-Salamanca, AlfonsoAguena, M.Allam, S.Andrade-Oliveira, F. [UNESP]Annis, J.Bluck, A. F.L.Brooks, D.Burke, D. L.Kind, M. CarrascoCarretero, J.Choi, A.Costanzi, M.da Costa, L. N.Pereira, M. E.S.de Vicente, J.Diehl, H. T.Drlica-Wagner, A.Eckert, K.Everett, S.Evrard, A. E.Ferrero, I.Fosalba, P.Frieman, J.García-Bellido, J.Gerdes, D. W.Giannantonio, T.Gruen, D.Gruendl, R. A.Gschwend, J.Gutierrez, G.Hinton, S. R.Hollowood, D. L.Honscheid, K.James, D. J.Krause, E.Kuehn, K.Kuropatkin, N.Lahav, O.Maia, M. A.G.March, M.Menanteau, F.Miquel, R.Morgan, R.Paz-Chinchón, F.Pieres, A.Malagón, A.A. PlazasRoodman, A.Sanchez, E.Scarpine, V.Serrano, S.Sevilla-Noarbe, I.Smith, M.Soares-Santos, M.Suchyta, E.Swanson, M. E.C.Tarle, G.Thomas, D.2022-04-29T08:32:44Z2022-04-29T08:32:44Z2021-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4425-4444http://dx.doi.org/10.1093/mnras/stab2142Monthly Notices of the Royal Astronomical Society, v. 507, n. 3, p. 4425-4444, 2021.1365-29660035-8711http://hdl.handle.net/11449/22948010.1093/mnras/stab21422-s2.0-85114423282Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices of the Royal Astronomical Societyinfo:eu-repo/semantics/openAccess2022-04-29T08:32:44Zoai:repositorio.unesp.br:11449/229480Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:51:12.821995Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
title Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
spellingShingle Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
Cheng, Ting-Yun
Catalogues
Galaxies: structure
Methods: data analysis
Methods: observational
title_short Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
title_full Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
title_fullStr Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
title_full_unstemmed Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
title_sort Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
author Cheng, Ting-Yun
author_facet Cheng, Ting-Yun
Conselice, Christopher J.
Aragón-Salamanca, Alfonso
Aguena, M.
Allam, S.
Andrade-Oliveira, F. [UNESP]
Annis, J.
Bluck, A. F.L.
Brooks, D.
Burke, D. L.
Kind, M. Carrasco
Carretero, J.
Choi, A.
Costanzi, M.
da Costa, L. N.
Pereira, M. E.S.
de Vicente, J.
Diehl, H. T.
Drlica-Wagner, A.
Eckert, K.
Everett, S.
Evrard, A. E.
Ferrero, I.
Fosalba, P.
Frieman, J.
García-Bellido, J.
Gerdes, D. W.
Giannantonio, T.
Gruen, D.
Gruendl, R. A.
Gschwend, J.
Gutierrez, G.
Hinton, S. R.
Hollowood, D. L.
Honscheid, K.
James, D. J.
Krause, E.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Maia, M. A.G.
March, M.
Menanteau, F.
Miquel, R.
Morgan, R.
Paz-Chinchón, F.
Pieres, A.
Malagón, A.A. Plazas
Roodman, A.
Sanchez, E.
Scarpine, V.
Serrano, S.
Sevilla-Noarbe, I.
Smith, M.
Soares-Santos, M.
Suchyta, E.
Swanson, M. E.C.
Tarle, G.
Thomas, D.
author_role author
author2 Conselice, Christopher J.
Aragón-Salamanca, Alfonso
Aguena, M.
Allam, S.
Andrade-Oliveira, F. [UNESP]
Annis, J.
Bluck, A. F.L.
Brooks, D.
Burke, D. L.
Kind, M. Carrasco
Carretero, J.
Choi, A.
Costanzi, M.
da Costa, L. N.
Pereira, M. E.S.
de Vicente, J.
Diehl, H. T.
Drlica-Wagner, A.
Eckert, K.
Everett, S.
Evrard, A. E.
Ferrero, I.
Fosalba, P.
Frieman, J.
García-Bellido, J.
Gerdes, D. W.
Giannantonio, T.
Gruen, D.
Gruendl, R. A.
Gschwend, J.
Gutierrez, G.
Hinton, S. R.
Hollowood, D. L.
Honscheid, K.
James, D. J.
Krause, E.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Maia, M. A.G.
March, M.
Menanteau, F.
Miquel, R.
Morgan, R.
Paz-Chinchón, F.
Pieres, A.
Malagón, A.A. Plazas
Roodman, A.
Sanchez, E.
Scarpine, V.
Serrano, S.
Sevilla-Noarbe, I.
Smith, M.
Soares-Santos, M.
Suchyta, E.
Swanson, M. E.C.
Tarle, G.
Thomas, D.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Durham University
University Park
University of Manchester
Universidade de São Paulo (USP)
Laboratório Interinstitucional de e-Astronomia – LIneA
Fermi National Accelerator Laboratory
Universidade Estadual Paulista (UNESP)
University of Cambridge
University College London
Stanford University
SLAC National Accelerator Laboratory
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign
Barcelona Institute of Science and Technology
Ohio State University
University of Trieste
INAF – Osservatorio Astronomico di Trieste
Institute for Fundamental Physics of the Universe
Observatório Nacional
University of Michigan
Medioambientales y Tecnológicas (CIEMAT)
University of Chicago
University of Pennsylvania
Santa Cruz Institute for Particle Physics
University of Oslo
Institut d’Estudis Espacials de Catalunya (IEEC)
CSIC)
Universidad Autonoma de Madrid
University of Queensland
Harvard & Smithsonian
University of Arizona
Macquarie University
Lowell Observatory
Institució Catalana de Recerca i Estudis Avançats
University of Wisconsin–Madison
Peyton Hall
University of Southampton
Oak Ridge National Laboratory
University of Portsmouth
dc.contributor.author.fl_str_mv Cheng, Ting-Yun
Conselice, Christopher J.
Aragón-Salamanca, Alfonso
Aguena, M.
Allam, S.
Andrade-Oliveira, F. [UNESP]
Annis, J.
Bluck, A. F.L.
Brooks, D.
Burke, D. L.
Kind, M. Carrasco
Carretero, J.
Choi, A.
Costanzi, M.
da Costa, L. N.
Pereira, M. E.S.
de Vicente, J.
Diehl, H. T.
Drlica-Wagner, A.
Eckert, K.
Everett, S.
Evrard, A. E.
Ferrero, I.
Fosalba, P.
Frieman, J.
García-Bellido, J.
Gerdes, D. W.
Giannantonio, T.
Gruen, D.
Gruendl, R. A.
Gschwend, J.
Gutierrez, G.
Hinton, S. R.
Hollowood, D. L.
Honscheid, K.
James, D. J.
Krause, E.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Maia, M. A.G.
March, M.
Menanteau, F.
Miquel, R.
Morgan, R.
Paz-Chinchón, F.
Pieres, A.
Malagón, A.A. Plazas
Roodman, A.
Sanchez, E.
Scarpine, V.
Serrano, S.
Sevilla-Noarbe, I.
Smith, M.
Soares-Santos, M.
Suchyta, E.
Swanson, M. E.C.
Tarle, G.
Thomas, D.
dc.subject.por.fl_str_mv Catalogues
Galaxies: structure
Methods: data analysis
Methods: observational
topic Catalogues
Galaxies: structure
Methods: data analysis
Methods: observational
description We present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i < 18) at low redshift (z < 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i < 21, and redshifts z < 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i < 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-01
2022-04-29T08:32:44Z
2022-04-29T08:32:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1093/mnras/stab2142
Monthly Notices of the Royal Astronomical Society, v. 507, n. 3, p. 4425-4444, 2021.
1365-2966
0035-8711
http://hdl.handle.net/11449/229480
10.1093/mnras/stab2142
2-s2.0-85114423282
url http://dx.doi.org/10.1093/mnras/stab2142
http://hdl.handle.net/11449/229480
identifier_str_mv Monthly Notices of the Royal Astronomical Society, v. 507, n. 3, p. 4425-4444, 2021.
1365-2966
0035-8711
10.1093/mnras/stab2142
2-s2.0-85114423282
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Monthly Notices of the Royal Astronomical Society
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4425-4444
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129366543040512