Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1093/mnras/stab2142 http://hdl.handle.net/11449/229480 |
Resumo: | We present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i < 18) at low redshift (z < 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i < 21, and redshifts z < 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i < 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set. |
id |
UNSP_25cd324e350e3d08ee3e260efc8fafef |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/229480 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networksCataloguesGalaxies: structureMethods: data analysisMethods: observationalWe present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i < 18) at low redshift (z < 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i < 21, and redshifts z < 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i < 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set.Centre of Extragalactic Astronomy Durham University, Stockton RoadSchool of Physics and Astronomy University of Nottingham University ParkJodrell Bank Centre for Astrophysics University of Manchester, Oxford RoadDepartamento de Física Matemática Instituto de Física Universidade de São Paulo, CP 66318, SPLaboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, RJFermi National Accelerator Laboratory, PO Box 500Instituto de Física Teórica Universidade Estadual PaulistaCavendish Laboratory Astrophysics Group University of Cambridge, Madingley RoadKavli Institute for Cosmology University of Cambridge, Madingley RoadDepartment of Physics & Astronomy University College London, Gower StreetKavli Institute for Particle Astrophysics & Cosmology Stanford University, PO Box 2450SLAC National Accelerator LaboratoryCenter for Astrophysical Surveys National Center for Supercomputing Applications, 1205 West Clark StreetDepartment of Astronomy University of Illinois at Urbana–Champaign, 1002 W. Green StreetInstitut de Física d’Altes Energies (IFAE) Barcelona Institute of Science and Technology Campus UABCenter for Cosmology and Astro-Particle Physics Ohio State UniversityAstronomy Unit Department of Physics University of Trieste, Via Tiepolo 11INAF – Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11Institute for Fundamental Physics of the Universe, Via Beirut 2Observatório Nacional, Rua Gal. José Cristino 77Department of Physics University of MichiganCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT)Department of Astronomy and Astrophysics University of ChicagoKavli Institute for Cosmological Physics University of ChicagoDepartment of Physics and Astronomy University of PennsylvaniaSanta Cruz Institute for Particle PhysicsDepartment of Astronomy University of MichiganInstitute of Theoretical Astrophysics University of Oslo, PO Box 1029 BlindernInstitut d’Estudis Espacials de Catalunya (IEEC)Institute of Space Sciences (ICE CSIC) Campus UAB, Carrer de Can Magrans, s/nInstituto de Fisica Teorica UAM/CSIC Universidad Autonoma de MadridInstitute of Astronomy University of Cambridge, Madingley RoadDepartment of Physics Stanford University, 382 Via Pueblo MallSchool of Mathematics and Physics University of QueenslandDepartment of Physics Ohio State UniversityCenter for Astrophysics Harvard & Smithsonian, 60 Garden StreetDepartment of Astronomy/Steward Observatory University of Arizona, 933 North Cherry AvenueAustralian Astronomical Optics Macquarie UniversityLowell Observatory, 1400 Mars Hill RoadInstitució Catalana de Recerca i Estudis AvançatsPhysics Department University of Wisconsin–Madison, 2320 Chamberlin Hall, 1150 University AvenueDepartment of Astrophysical Sciences Princeton University Peyton HallSchool of Physics and Astronomy University of SouthamptonComputer Science and Mathematics Division Oak Ridge National LaboratoryInstitute of Cosmology and Gravitation University of PortsmouthInstituto de Física Teórica Universidade Estadual PaulistaDurham UniversityUniversity ParkUniversity of ManchesterUniversidade de São Paulo (USP)Laboratório Interinstitucional de e-Astronomia – LIneAFermi National Accelerator LaboratoryUniversidade Estadual Paulista (UNESP)University of CambridgeUniversity College LondonStanford UniversitySLAC National Accelerator LaboratoryNational Center for Supercomputing ApplicationsUniversity of Illinois at Urbana–ChampaignBarcelona Institute of Science and TechnologyOhio State UniversityUniversity of TriesteINAF – Osservatorio Astronomico di TriesteInstitute for Fundamental Physics of the UniverseObservatório NacionalUniversity of MichiganMedioambientales y Tecnológicas (CIEMAT)University of ChicagoUniversity of PennsylvaniaSanta Cruz Institute for Particle PhysicsUniversity of OsloInstitut d’Estudis Espacials de Catalunya (IEEC)CSIC)Universidad Autonoma de MadridUniversity of QueenslandHarvard & SmithsonianUniversity of ArizonaMacquarie UniversityLowell ObservatoryInstitució Catalana de Recerca i Estudis AvançatsUniversity of Wisconsin–MadisonPeyton HallUniversity of SouthamptonOak Ridge National LaboratoryUniversity of PortsmouthCheng, Ting-YunConselice, Christopher J.Aragón-Salamanca, AlfonsoAguena, M.Allam, S.Andrade-Oliveira, F. [UNESP]Annis, J.Bluck, A. F.L.Brooks, D.Burke, D. L.Kind, M. CarrascoCarretero, J.Choi, A.Costanzi, M.da Costa, L. N.Pereira, M. E.S.de Vicente, J.Diehl, H. T.Drlica-Wagner, A.Eckert, K.Everett, S.Evrard, A. E.Ferrero, I.Fosalba, P.Frieman, J.García-Bellido, J.Gerdes, D. W.Giannantonio, T.Gruen, D.Gruendl, R. A.Gschwend, J.Gutierrez, G.Hinton, S. R.Hollowood, D. L.Honscheid, K.James, D. J.Krause, E.Kuehn, K.Kuropatkin, N.Lahav, O.Maia, M. A.G.March, M.Menanteau, F.Miquel, R.Morgan, R.Paz-Chinchón, F.Pieres, A.Malagón, A.A. PlazasRoodman, A.Sanchez, E.Scarpine, V.Serrano, S.Sevilla-Noarbe, I.Smith, M.Soares-Santos, M.Suchyta, E.Swanson, M. E.C.Tarle, G.Thomas, D.2022-04-29T08:32:44Z2022-04-29T08:32:44Z2021-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4425-4444http://dx.doi.org/10.1093/mnras/stab2142Monthly Notices of the Royal Astronomical Society, v. 507, n. 3, p. 4425-4444, 2021.1365-29660035-8711http://hdl.handle.net/11449/22948010.1093/mnras/stab21422-s2.0-85114423282Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices of the Royal Astronomical Societyinfo:eu-repo/semantics/openAccess2022-04-29T08:32:44Zoai:repositorio.unesp.br:11449/229480Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:51:12.821995Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks |
title |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks |
spellingShingle |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks Cheng, Ting-Yun Catalogues Galaxies: structure Methods: data analysis Methods: observational |
title_short |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks |
title_full |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks |
title_fullStr |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks |
title_full_unstemmed |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks |
title_sort |
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks |
author |
Cheng, Ting-Yun |
author_facet |
Cheng, Ting-Yun Conselice, Christopher J. Aragón-Salamanca, Alfonso Aguena, M. Allam, S. Andrade-Oliveira, F. [UNESP] Annis, J. Bluck, A. F.L. Brooks, D. Burke, D. L. Kind, M. Carrasco Carretero, J. Choi, A. Costanzi, M. da Costa, L. N. Pereira, M. E.S. de Vicente, J. Diehl, H. T. Drlica-Wagner, A. Eckert, K. Everett, S. Evrard, A. E. Ferrero, I. Fosalba, P. Frieman, J. García-Bellido, J. Gerdes, D. W. Giannantonio, T. Gruen, D. Gruendl, R. A. Gschwend, J. Gutierrez, G. Hinton, S. R. Hollowood, D. L. Honscheid, K. James, D. J. Krause, E. Kuehn, K. Kuropatkin, N. Lahav, O. Maia, M. A.G. March, M. Menanteau, F. Miquel, R. Morgan, R. Paz-Chinchón, F. Pieres, A. Malagón, A.A. Plazas Roodman, A. Sanchez, E. Scarpine, V. Serrano, S. Sevilla-Noarbe, I. Smith, M. Soares-Santos, M. Suchyta, E. Swanson, M. E.C. Tarle, G. Thomas, D. |
author_role |
author |
author2 |
Conselice, Christopher J. Aragón-Salamanca, Alfonso Aguena, M. Allam, S. Andrade-Oliveira, F. [UNESP] Annis, J. Bluck, A. F.L. Brooks, D. Burke, D. L. Kind, M. Carrasco Carretero, J. Choi, A. Costanzi, M. da Costa, L. N. Pereira, M. E.S. de Vicente, J. Diehl, H. T. Drlica-Wagner, A. Eckert, K. Everett, S. Evrard, A. E. Ferrero, I. Fosalba, P. Frieman, J. García-Bellido, J. Gerdes, D. W. Giannantonio, T. Gruen, D. Gruendl, R. A. Gschwend, J. Gutierrez, G. Hinton, S. R. Hollowood, D. L. Honscheid, K. James, D. J. Krause, E. Kuehn, K. Kuropatkin, N. Lahav, O. Maia, M. A.G. March, M. Menanteau, F. Miquel, R. Morgan, R. Paz-Chinchón, F. Pieres, A. Malagón, A.A. Plazas Roodman, A. Sanchez, E. Scarpine, V. Serrano, S. Sevilla-Noarbe, I. Smith, M. Soares-Santos, M. Suchyta, E. Swanson, M. E.C. Tarle, G. Thomas, D. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Durham University University Park University of Manchester Universidade de São Paulo (USP) Laboratório Interinstitucional de e-Astronomia – LIneA Fermi National Accelerator Laboratory Universidade Estadual Paulista (UNESP) University of Cambridge University College London Stanford University SLAC National Accelerator Laboratory National Center for Supercomputing Applications University of Illinois at Urbana–Champaign Barcelona Institute of Science and Technology Ohio State University University of Trieste INAF – Osservatorio Astronomico di Trieste Institute for Fundamental Physics of the Universe Observatório Nacional University of Michigan Medioambientales y Tecnológicas (CIEMAT) University of Chicago University of Pennsylvania Santa Cruz Institute for Particle Physics University of Oslo Institut d’Estudis Espacials de Catalunya (IEEC) CSIC) Universidad Autonoma de Madrid University of Queensland Harvard & Smithsonian University of Arizona Macquarie University Lowell Observatory Institució Catalana de Recerca i Estudis Avançats University of Wisconsin–Madison Peyton Hall University of Southampton Oak Ridge National Laboratory University of Portsmouth |
dc.contributor.author.fl_str_mv |
Cheng, Ting-Yun Conselice, Christopher J. Aragón-Salamanca, Alfonso Aguena, M. Allam, S. Andrade-Oliveira, F. [UNESP] Annis, J. Bluck, A. F.L. Brooks, D. Burke, D. L. Kind, M. Carrasco Carretero, J. Choi, A. Costanzi, M. da Costa, L. N. Pereira, M. E.S. de Vicente, J. Diehl, H. T. Drlica-Wagner, A. Eckert, K. Everett, S. Evrard, A. E. Ferrero, I. Fosalba, P. Frieman, J. García-Bellido, J. Gerdes, D. W. Giannantonio, T. Gruen, D. Gruendl, R. A. Gschwend, J. Gutierrez, G. Hinton, S. R. Hollowood, D. L. Honscheid, K. James, D. J. Krause, E. Kuehn, K. Kuropatkin, N. Lahav, O. Maia, M. A.G. March, M. Menanteau, F. Miquel, R. Morgan, R. Paz-Chinchón, F. Pieres, A. Malagón, A.A. Plazas Roodman, A. Sanchez, E. Scarpine, V. Serrano, S. Sevilla-Noarbe, I. Smith, M. Soares-Santos, M. Suchyta, E. Swanson, M. E.C. Tarle, G. Thomas, D. |
dc.subject.por.fl_str_mv |
Catalogues Galaxies: structure Methods: data analysis Methods: observational |
topic |
Catalogues Galaxies: structure Methods: data analysis Methods: observational |
description |
We present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i < 18) at low redshift (z < 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i < 21, and redshifts z < 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i < 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-01 2022-04-29T08:32:44Z 2022-04-29T08:32:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1093/mnras/stab2142 Monthly Notices of the Royal Astronomical Society, v. 507, n. 3, p. 4425-4444, 2021. 1365-2966 0035-8711 http://hdl.handle.net/11449/229480 10.1093/mnras/stab2142 2-s2.0-85114423282 |
url |
http://dx.doi.org/10.1093/mnras/stab2142 http://hdl.handle.net/11449/229480 |
identifier_str_mv |
Monthly Notices of the Royal Astronomical Society, v. 507, n. 3, p. 4425-4444, 2021. 1365-2966 0035-8711 10.1093/mnras/stab2142 2-s2.0-85114423282 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Monthly Notices of the Royal Astronomical Society |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
4425-4444 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129366543040512 |