Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.bbapap.2013.02.030 http://hdl.handle.net/11449/76833 |
Resumo: | Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved. |
id |
UNSP_25da020e6afb1c127e00a14ee4b677bb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/76833 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulationsComputational characterizationExperimental validationMolecular dynamicsMultifunctional enzymeSmall-angle X-ray scatteringendo 1,4 beta xylanaseglycosidasehybrid proteinlicheninaseBacillus subtilischemical structurechemistrycomputer simulationenzymologygeneticsmetabolismmolecular dynamicssmall angle scatteringComputer SimulationEndo-1,4-beta XylanasesGlycoside HydrolasesModels, MolecularMolecular Dynamics SimulationRecombinant Fusion ProteinsScattering, Small AngleMultifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São PauloDepartamento de Física IBILCE Universidade Estadual Paulista - UNESP, São José do Rio Preto, SPFaculdade de Engenharia de Alimentos Universidade Estadual de Campinas, Campinas, SPDepartamento de Física e Biofísica Instituto de Biociências UNESP, Botucatu, São PauloLaboratório Nacional de Biociências - LNBio/CNPEM, Campinas, SPDepartamento de Física IBILCE Universidade Estadual Paulista - UNESP, São José do Rio Preto, SPDepartamento de Física e Biofísica Instituto de Biociências UNESP, Botucatu, São PauloLaboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEMUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Laboratório Nacional de Biociências - LNBio/CNPEMCota, Junio [UNESP]Oliveira, Leandro C. [UNESP]Damásio, André R.L.Citadini, Ana P.Hoffmam, Zaira B.Alvarez, Thabata M.Codima, Carla A.Leite, Vitor Barbanti Pereira [UNESP]Pastore, GlauciaDe Oliveira-Neto, Mario [UNESP]Murakami, Mario T.Ruller, RobertoSquina, Fabio M.2014-05-27T11:30:51Z2014-05-27T11:30:51Z2013-10-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1492-1500application/pdfhttp://dx.doi.org/10.1016/j.bbapap.2013.02.030Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 8, p. 1492-1500, 2013.1570-96391878-1454http://hdl.handle.net/11449/7683310.1016/j.bbapap.2013.02.030WOS:0003218022000052-s2.0-848822563352-s2.0-84882256335.pdf0500034174785796Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiochimica et Biophysica Acta: Proteins and Proteomics2.6091,170info:eu-repo/semantics/openAccess2023-10-28T06:05:29Zoai:repositorio.unesp.br:11449/76833Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:13:32.487117Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations |
title |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations |
spellingShingle |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations Cota, Junio [UNESP] Computational characterization Experimental validation Molecular dynamics Multifunctional enzyme Small-angle X-ray scattering endo 1,4 beta xylanase glycosidase hybrid protein licheninase Bacillus subtilis chemical structure chemistry computer simulation enzymology genetics metabolism molecular dynamics small angle scattering Computer Simulation Endo-1,4-beta Xylanases Glycoside Hydrolases Models, Molecular Molecular Dynamics Simulation Recombinant Fusion Proteins Scattering, Small Angle |
title_short |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations |
title_full |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations |
title_fullStr |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations |
title_full_unstemmed |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations |
title_sort |
Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations |
author |
Cota, Junio [UNESP] |
author_facet |
Cota, Junio [UNESP] Oliveira, Leandro C. [UNESP] Damásio, André R.L. Citadini, Ana P. Hoffmam, Zaira B. Alvarez, Thabata M. Codima, Carla A. Leite, Vitor Barbanti Pereira [UNESP] Pastore, Glaucia De Oliveira-Neto, Mario [UNESP] Murakami, Mario T. Ruller, Roberto Squina, Fabio M. |
author_role |
author |
author2 |
Oliveira, Leandro C. [UNESP] Damásio, André R.L. Citadini, Ana P. Hoffmam, Zaira B. Alvarez, Thabata M. Codima, Carla A. Leite, Vitor Barbanti Pereira [UNESP] Pastore, Glaucia De Oliveira-Neto, Mario [UNESP] Murakami, Mario T. Ruller, Roberto Squina, Fabio M. |
author2_role |
author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) Laboratório Nacional de Biociências - LNBio/CNPEM |
dc.contributor.author.fl_str_mv |
Cota, Junio [UNESP] Oliveira, Leandro C. [UNESP] Damásio, André R.L. Citadini, Ana P. Hoffmam, Zaira B. Alvarez, Thabata M. Codima, Carla A. Leite, Vitor Barbanti Pereira [UNESP] Pastore, Glaucia De Oliveira-Neto, Mario [UNESP] Murakami, Mario T. Ruller, Roberto Squina, Fabio M. |
dc.subject.por.fl_str_mv |
Computational characterization Experimental validation Molecular dynamics Multifunctional enzyme Small-angle X-ray scattering endo 1,4 beta xylanase glycosidase hybrid protein licheninase Bacillus subtilis chemical structure chemistry computer simulation enzymology genetics metabolism molecular dynamics small angle scattering Computer Simulation Endo-1,4-beta Xylanases Glycoside Hydrolases Models, Molecular Molecular Dynamics Simulation Recombinant Fusion Proteins Scattering, Small Angle |
topic |
Computational characterization Experimental validation Molecular dynamics Multifunctional enzyme Small-angle X-ray scattering endo 1,4 beta xylanase glycosidase hybrid protein licheninase Bacillus subtilis chemical structure chemistry computer simulation enzymology genetics metabolism molecular dynamics small angle scattering Computer Simulation Endo-1,4-beta Xylanases Glycoside Hydrolases Models, Molecular Molecular Dynamics Simulation Recombinant Fusion Proteins Scattering, Small Angle |
description |
Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10-14 2014-05-27T11:30:51Z 2014-05-27T11:30:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.bbapap.2013.02.030 Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 8, p. 1492-1500, 2013. 1570-9639 1878-1454 http://hdl.handle.net/11449/76833 10.1016/j.bbapap.2013.02.030 WOS:000321802200005 2-s2.0-84882256335 2-s2.0-84882256335.pdf 0500034174785796 |
url |
http://dx.doi.org/10.1016/j.bbapap.2013.02.030 http://hdl.handle.net/11449/76833 |
identifier_str_mv |
Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 8, p. 1492-1500, 2013. 1570-9639 1878-1454 10.1016/j.bbapap.2013.02.030 WOS:000321802200005 2-s2.0-84882256335 2-s2.0-84882256335.pdf 0500034174785796 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Biochimica et Biophysica Acta: Proteins and Proteomics 2.609 1,170 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1492-1500 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128620633260032 |