Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations

Detalhes bibliográficos
Autor(a) principal: Cota, Junio [UNESP]
Data de Publicação: 2013
Outros Autores: Oliveira, Leandro C. [UNESP], Damásio, André R.L., Citadini, Ana P., Hoffmam, Zaira B., Alvarez, Thabata M., Codima, Carla A., Leite, Vitor Barbanti Pereira [UNESP], Pastore, Glaucia, De Oliveira-Neto, Mario [UNESP], Murakami, Mario T., Ruller, Roberto, Squina, Fabio M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.bbapap.2013.02.030
http://hdl.handle.net/11449/76833
Resumo: Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.
id UNSP_25da020e6afb1c127e00a14ee4b677bb
oai_identifier_str oai:repositorio.unesp.br:11449/76833
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulationsComputational characterizationExperimental validationMolecular dynamicsMultifunctional enzymeSmall-angle X-ray scatteringendo 1,4 beta xylanaseglycosidasehybrid proteinlicheninaseBacillus subtilischemical structurechemistrycomputer simulationenzymologygeneticsmetabolismmolecular dynamicssmall angle scatteringComputer SimulationEndo-1,4-beta XylanasesGlycoside HydrolasesModels, MolecularMolecular Dynamics SimulationRecombinant Fusion ProteinsScattering, Small AngleMultifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São PauloDepartamento de Física IBILCE Universidade Estadual Paulista - UNESP, São José do Rio Preto, SPFaculdade de Engenharia de Alimentos Universidade Estadual de Campinas, Campinas, SPDepartamento de Física e Biofísica Instituto de Biociências UNESP, Botucatu, São PauloLaboratório Nacional de Biociências - LNBio/CNPEM, Campinas, SPDepartamento de Física IBILCE Universidade Estadual Paulista - UNESP, São José do Rio Preto, SPDepartamento de Física e Biofísica Instituto de Biociências UNESP, Botucatu, São PauloLaboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEMUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Laboratório Nacional de Biociências - LNBio/CNPEMCota, Junio [UNESP]Oliveira, Leandro C. [UNESP]Damásio, André R.L.Citadini, Ana P.Hoffmam, Zaira B.Alvarez, Thabata M.Codima, Carla A.Leite, Vitor Barbanti Pereira [UNESP]Pastore, GlauciaDe Oliveira-Neto, Mario [UNESP]Murakami, Mario T.Ruller, RobertoSquina, Fabio M.2014-05-27T11:30:51Z2014-05-27T11:30:51Z2013-10-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1492-1500application/pdfhttp://dx.doi.org/10.1016/j.bbapap.2013.02.030Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 8, p. 1492-1500, 2013.1570-96391878-1454http://hdl.handle.net/11449/7683310.1016/j.bbapap.2013.02.030WOS:0003218022000052-s2.0-848822563352-s2.0-84882256335.pdf0500034174785796Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiochimica et Biophysica Acta: Proteins and Proteomics2.6091,170info:eu-repo/semantics/openAccess2023-10-28T06:05:29Zoai:repositorio.unesp.br:11449/76833Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:13:32.487117Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
title Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
spellingShingle Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
Cota, Junio [UNESP]
Computational characterization
Experimental validation
Molecular dynamics
Multifunctional enzyme
Small-angle X-ray scattering
endo 1,4 beta xylanase
glycosidase
hybrid protein
licheninase
Bacillus subtilis
chemical structure
chemistry
computer simulation
enzymology
genetics
metabolism
molecular dynamics
small angle scattering
Computer Simulation
Endo-1,4-beta Xylanases
Glycoside Hydrolases
Models, Molecular
Molecular Dynamics Simulation
Recombinant Fusion Proteins
Scattering, Small Angle
title_short Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
title_full Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
title_fullStr Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
title_full_unstemmed Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
title_sort Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
author Cota, Junio [UNESP]
author_facet Cota, Junio [UNESP]
Oliveira, Leandro C. [UNESP]
Damásio, André R.L.
Citadini, Ana P.
Hoffmam, Zaira B.
Alvarez, Thabata M.
Codima, Carla A.
Leite, Vitor Barbanti Pereira [UNESP]
Pastore, Glaucia
De Oliveira-Neto, Mario [UNESP]
Murakami, Mario T.
Ruller, Roberto
Squina, Fabio M.
author_role author
author2 Oliveira, Leandro C. [UNESP]
Damásio, André R.L.
Citadini, Ana P.
Hoffmam, Zaira B.
Alvarez, Thabata M.
Codima, Carla A.
Leite, Vitor Barbanti Pereira [UNESP]
Pastore, Glaucia
De Oliveira-Neto, Mario [UNESP]
Murakami, Mario T.
Ruller, Roberto
Squina, Fabio M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
Laboratório Nacional de Biociências - LNBio/CNPEM
dc.contributor.author.fl_str_mv Cota, Junio [UNESP]
Oliveira, Leandro C. [UNESP]
Damásio, André R.L.
Citadini, Ana P.
Hoffmam, Zaira B.
Alvarez, Thabata M.
Codima, Carla A.
Leite, Vitor Barbanti Pereira [UNESP]
Pastore, Glaucia
De Oliveira-Neto, Mario [UNESP]
Murakami, Mario T.
Ruller, Roberto
Squina, Fabio M.
dc.subject.por.fl_str_mv Computational characterization
Experimental validation
Molecular dynamics
Multifunctional enzyme
Small-angle X-ray scattering
endo 1,4 beta xylanase
glycosidase
hybrid protein
licheninase
Bacillus subtilis
chemical structure
chemistry
computer simulation
enzymology
genetics
metabolism
molecular dynamics
small angle scattering
Computer Simulation
Endo-1,4-beta Xylanases
Glycoside Hydrolases
Models, Molecular
Molecular Dynamics Simulation
Recombinant Fusion Proteins
Scattering, Small Angle
topic Computational characterization
Experimental validation
Molecular dynamics
Multifunctional enzyme
Small-angle X-ray scattering
endo 1,4 beta xylanase
glycosidase
hybrid protein
licheninase
Bacillus subtilis
chemical structure
chemistry
computer simulation
enzymology
genetics
metabolism
molecular dynamics
small angle scattering
Computer Simulation
Endo-1,4-beta Xylanases
Glycoside Hydrolases
Models, Molecular
Molecular Dynamics Simulation
Recombinant Fusion Proteins
Scattering, Small Angle
description Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.
publishDate 2013
dc.date.none.fl_str_mv 2013-10-14
2014-05-27T11:30:51Z
2014-05-27T11:30:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.bbapap.2013.02.030
Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 8, p. 1492-1500, 2013.
1570-9639
1878-1454
http://hdl.handle.net/11449/76833
10.1016/j.bbapap.2013.02.030
WOS:000321802200005
2-s2.0-84882256335
2-s2.0-84882256335.pdf
0500034174785796
url http://dx.doi.org/10.1016/j.bbapap.2013.02.030
http://hdl.handle.net/11449/76833
identifier_str_mv Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 8, p. 1492-1500, 2013.
1570-9639
1878-1454
10.1016/j.bbapap.2013.02.030
WOS:000321802200005
2-s2.0-84882256335
2-s2.0-84882256335.pdf
0500034174785796
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biochimica et Biophysica Acta: Proteins and Proteomics
2.609
1,170
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1492-1500
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128620633260032