The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros

Detalhes bibliográficos
Autor(a) principal: Batista, Erica Boizan
Data de Publicação: 2018
Outros Autores: Costa, João Carlos Ferreira [UNESP], Nuño-Ballesteros, Juan J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00574-017-0058-4
http://hdl.handle.net/11449/175496
Resumo: We consider the topological classification of finitely determined map germs [f] : (R3, 0) → (R2, 0) with f- 1(0) ≠ { 0 }. The case f- 1(0) = { 0 } was treated in another recent paper by the authors. The main tool used to describe the topological type is the link of [f], which is obtained by taking the intersection of its image with a small sphere Sδ1 centered at the origin. The link is a stable map γf: N→ S1, where N is diffeomorphic to a sphere S2 minus 2L disks. We define a complete topological invariant called the generalized Reeb graph. Finally, we apply our results to give a topological description of some map germs with Boardman symbol Σ 2 , 1.
id UNSP_260c9027b600758e9fcc293c3a48da2c
oai_identifier_str oai:repositorio.unesp.br:11449/175496
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated ZerosClassificationLinkReeb graphTopological equivalenceWe consider the topological classification of finitely determined map germs [f] : (R3, 0) → (R2, 0) with f- 1(0) ≠ { 0 }. The case f- 1(0) = { 0 } was treated in another recent paper by the authors. The main tool used to describe the topological type is the link of [f], which is obtained by taking the intersection of its image with a small sphere Sδ1 centered at the origin. The link is a stable map γf: N→ S1, where N is diffeomorphic to a sphere S2 minus 2L disks. We define a complete topological invariant called the generalized Reeb graph. Finally, we apply our results to give a topological description of some map germs with Boardman symbol Σ 2 , 1.Centro de Ciências e Tecnologia Universidade Federal do CaririDepartamento de Matemática IBILCE-UNESP, Campus de São José do Rio PretoDepartament de Matemàtiques Universitat de València, Campus de BurjassotDepartamento de Matemática IBILCE-UNESP, Campus de São José do Rio PretoUniversidade Federal do CaririUniversidade Estadual Paulista (Unesp)Universitat de ValènciaBatista, Erica BoizanCosta, João Carlos Ferreira [UNESP]Nuño-Ballesteros, Juan J.2018-12-11T17:16:03Z2018-12-11T17:16:03Z2018-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article369-394application/pdfhttp://dx.doi.org/10.1007/s00574-017-0058-4Bulletin of the Brazilian Mathematical Society, v. 49, n. 2, p. 369-394, 2018.1678-7544http://hdl.handle.net/11449/17549610.1007/s00574-017-0058-42-s2.0-850342174402-s2.0-85034217440.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBulletin of the Brazilian Mathematical Society0,406info:eu-repo/semantics/openAccess2023-10-09T06:07:38Zoai:repositorio.unesp.br:11449/175496Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:28:46.647867Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
title The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
spellingShingle The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
Batista, Erica Boizan
Classification
Link
Reeb graph
Topological equivalence
title_short The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
title_full The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
title_fullStr The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
title_full_unstemmed The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
title_sort The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
author Batista, Erica Boizan
author_facet Batista, Erica Boizan
Costa, João Carlos Ferreira [UNESP]
Nuño-Ballesteros, Juan J.
author_role author
author2 Costa, João Carlos Ferreira [UNESP]
Nuño-Ballesteros, Juan J.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal do Cariri
Universidade Estadual Paulista (Unesp)
Universitat de València
dc.contributor.author.fl_str_mv Batista, Erica Boizan
Costa, João Carlos Ferreira [UNESP]
Nuño-Ballesteros, Juan J.
dc.subject.por.fl_str_mv Classification
Link
Reeb graph
Topological equivalence
topic Classification
Link
Reeb graph
Topological equivalence
description We consider the topological classification of finitely determined map germs [f] : (R3, 0) → (R2, 0) with f- 1(0) ≠ { 0 }. The case f- 1(0) = { 0 } was treated in another recent paper by the authors. The main tool used to describe the topological type is the link of [f], which is obtained by taking the intersection of its image with a small sphere Sδ1 centered at the origin. The link is a stable map γf: N→ S1, where N is diffeomorphic to a sphere S2 minus 2L disks. We define a complete topological invariant called the generalized Reeb graph. Finally, we apply our results to give a topological description of some map germs with Boardman symbol Σ 2 , 1.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:16:03Z
2018-12-11T17:16:03Z
2018-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00574-017-0058-4
Bulletin of the Brazilian Mathematical Society, v. 49, n. 2, p. 369-394, 2018.
1678-7544
http://hdl.handle.net/11449/175496
10.1007/s00574-017-0058-4
2-s2.0-85034217440
2-s2.0-85034217440.pdf
url http://dx.doi.org/10.1007/s00574-017-0058-4
http://hdl.handle.net/11449/175496
identifier_str_mv Bulletin of the Brazilian Mathematical Society, v. 49, n. 2, p. 369-394, 2018.
1678-7544
10.1007/s00574-017-0058-4
2-s2.0-85034217440
2-s2.0-85034217440.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Bulletin of the Brazilian Mathematical Society
0,406
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 369-394
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128364731432960