The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00574-017-0058-4 http://hdl.handle.net/11449/175496 |
Resumo: | We consider the topological classification of finitely determined map germs [f] : (R3, 0) → (R2, 0) with f- 1(0) ≠ { 0 }. The case f- 1(0) = { 0 } was treated in another recent paper by the authors. The main tool used to describe the topological type is the link of [f], which is obtained by taking the intersection of its image with a small sphere Sδ1 centered at the origin. The link is a stable map γf: N→ S1, where N is diffeomorphic to a sphere S2 minus 2L disks. We define a complete topological invariant called the generalized Reeb graph. Finally, we apply our results to give a topological description of some map germs with Boardman symbol Σ 2 , 1. |
id |
UNSP_260c9027b600758e9fcc293c3a48da2c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175496 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated ZerosClassificationLinkReeb graphTopological equivalenceWe consider the topological classification of finitely determined map germs [f] : (R3, 0) → (R2, 0) with f- 1(0) ≠ { 0 }. The case f- 1(0) = { 0 } was treated in another recent paper by the authors. The main tool used to describe the topological type is the link of [f], which is obtained by taking the intersection of its image with a small sphere Sδ1 centered at the origin. The link is a stable map γf: N→ S1, where N is diffeomorphic to a sphere S2 minus 2L disks. We define a complete topological invariant called the generalized Reeb graph. Finally, we apply our results to give a topological description of some map germs with Boardman symbol Σ 2 , 1.Centro de Ciências e Tecnologia Universidade Federal do CaririDepartamento de Matemática IBILCE-UNESP, Campus de São José do Rio PretoDepartament de Matemàtiques Universitat de València, Campus de BurjassotDepartamento de Matemática IBILCE-UNESP, Campus de São José do Rio PretoUniversidade Federal do CaririUniversidade Estadual Paulista (Unesp)Universitat de ValènciaBatista, Erica BoizanCosta, João Carlos Ferreira [UNESP]Nuño-Ballesteros, Juan J.2018-12-11T17:16:03Z2018-12-11T17:16:03Z2018-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article369-394application/pdfhttp://dx.doi.org/10.1007/s00574-017-0058-4Bulletin of the Brazilian Mathematical Society, v. 49, n. 2, p. 369-394, 2018.1678-7544http://hdl.handle.net/11449/17549610.1007/s00574-017-0058-42-s2.0-850342174402-s2.0-85034217440.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBulletin of the Brazilian Mathematical Society0,406info:eu-repo/semantics/openAccess2023-10-09T06:07:38Zoai:repositorio.unesp.br:11449/175496Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:28:46.647867Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros |
title |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros |
spellingShingle |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros Batista, Erica Boizan Classification Link Reeb graph Topological equivalence |
title_short |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros |
title_full |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros |
title_fullStr |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros |
title_full_unstemmed |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros |
title_sort |
The Reeb Graph of a Map Germ from R3 to R2 with Non Isolated Zeros |
author |
Batista, Erica Boizan |
author_facet |
Batista, Erica Boizan Costa, João Carlos Ferreira [UNESP] Nuño-Ballesteros, Juan J. |
author_role |
author |
author2 |
Costa, João Carlos Ferreira [UNESP] Nuño-Ballesteros, Juan J. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal do Cariri Universidade Estadual Paulista (Unesp) Universitat de València |
dc.contributor.author.fl_str_mv |
Batista, Erica Boizan Costa, João Carlos Ferreira [UNESP] Nuño-Ballesteros, Juan J. |
dc.subject.por.fl_str_mv |
Classification Link Reeb graph Topological equivalence |
topic |
Classification Link Reeb graph Topological equivalence |
description |
We consider the topological classification of finitely determined map germs [f] : (R3, 0) → (R2, 0) with f- 1(0) ≠ { 0 }. The case f- 1(0) = { 0 } was treated in another recent paper by the authors. The main tool used to describe the topological type is the link of [f], which is obtained by taking the intersection of its image with a small sphere Sδ1 centered at the origin. The link is a stable map γf: N→ S1, where N is diffeomorphic to a sphere S2 minus 2L disks. We define a complete topological invariant called the generalized Reeb graph. Finally, we apply our results to give a topological description of some map germs with Boardman symbol Σ 2 , 1. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:16:03Z 2018-12-11T17:16:03Z 2018-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00574-017-0058-4 Bulletin of the Brazilian Mathematical Society, v. 49, n. 2, p. 369-394, 2018. 1678-7544 http://hdl.handle.net/11449/175496 10.1007/s00574-017-0058-4 2-s2.0-85034217440 2-s2.0-85034217440.pdf |
url |
http://dx.doi.org/10.1007/s00574-017-0058-4 http://hdl.handle.net/11449/175496 |
identifier_str_mv |
Bulletin of the Brazilian Mathematical Society, v. 49, n. 2, p. 369-394, 2018. 1678-7544 10.1007/s00574-017-0058-4 2-s2.0-85034217440 2-s2.0-85034217440.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bulletin of the Brazilian Mathematical Society 0,406 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
369-394 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128364731432960 |