Towards vegetation species discrimination by using data-driven descriptors

Detalhes bibliográficos
Autor(a) principal: Nogueira, Keiller
Data de Publicação: 2017
Outros Autores: Dos Santos, Jefersson A., Fornazari, Tamires [UNESP], Freire Silva, Thiago Sanna [UNESP], Morellato, Leonor Patricia [UNESP], Torres, Ricardo Da S.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PRRS.2016.7867024
http://hdl.handle.net/11449/178769
Resumo: In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform wellknown feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.
id UNSP_268fe00a5ad18079a80fbaf90a0d3da5
oai_identifier_str oai:repositorio.unesp.br:11449/178769
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Towards vegetation species discrimination by using data-driven descriptorsDeep LearningFeature LearningHigh-resolution ImagesImage ClassificationMachine LearningRemote SensingIn this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform wellknown feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.Department of Computer Science Universidade Federal de Minas Gerais UFMGSao Paulo State University UNESPInstitute of Computing University of Campinas UNICAMPSao Paulo State University UNESPUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerDos Santos, Jefersson A.Fornazari, Tamires [UNESP]Freire Silva, Thiago Sanna [UNESP]Morellato, Leonor Patricia [UNESP]Torres, Ricardo Da S.2018-12-11T17:32:01Z2018-12-11T17:32:01Z2017-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PRRS.2016.78670242016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016.http://hdl.handle.net/11449/17876910.1109/PRRS.2016.78670242-s2.0-85016993939Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016info:eu-repo/semantics/openAccess2021-10-23T21:47:05Zoai:repositorio.unesp.br:11449/178769Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:55:13.197755Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Towards vegetation species discrimination by using data-driven descriptors
title Towards vegetation species discrimination by using data-driven descriptors
spellingShingle Towards vegetation species discrimination by using data-driven descriptors
Nogueira, Keiller
Deep Learning
Feature Learning
High-resolution Images
Image Classification
Machine Learning
Remote Sensing
title_short Towards vegetation species discrimination by using data-driven descriptors
title_full Towards vegetation species discrimination by using data-driven descriptors
title_fullStr Towards vegetation species discrimination by using data-driven descriptors
title_full_unstemmed Towards vegetation species discrimination by using data-driven descriptors
title_sort Towards vegetation species discrimination by using data-driven descriptors
author Nogueira, Keiller
author_facet Nogueira, Keiller
Dos Santos, Jefersson A.
Fornazari, Tamires [UNESP]
Freire Silva, Thiago Sanna [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo Da S.
author_role author
author2 Dos Santos, Jefersson A.
Fornazari, Tamires [UNESP]
Freire Silva, Thiago Sanna [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo Da S.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Minas Gerais (UFMG)
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Nogueira, Keiller
Dos Santos, Jefersson A.
Fornazari, Tamires [UNESP]
Freire Silva, Thiago Sanna [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo Da S.
dc.subject.por.fl_str_mv Deep Learning
Feature Learning
High-resolution Images
Image Classification
Machine Learning
Remote Sensing
topic Deep Learning
Feature Learning
High-resolution Images
Image Classification
Machine Learning
Remote Sensing
description In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform wellknown feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-28
2018-12-11T17:32:01Z
2018-12-11T17:32:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PRRS.2016.7867024
2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016.
http://hdl.handle.net/11449/178769
10.1109/PRRS.2016.7867024
2-s2.0-85016993939
url http://dx.doi.org/10.1109/PRRS.2016.7867024
http://hdl.handle.net/11449/178769
identifier_str_mv 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016.
10.1109/PRRS.2016.7867024
2-s2.0-85016993939
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128290407317504