Towards vegetation species discrimination by using data-driven descriptors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PRRS.2016.7867024 http://hdl.handle.net/11449/178769 |
Resumo: | In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform wellknown feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets. |
id |
UNSP_268fe00a5ad18079a80fbaf90a0d3da5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/178769 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Towards vegetation species discrimination by using data-driven descriptorsDeep LearningFeature LearningHigh-resolution ImagesImage ClassificationMachine LearningRemote SensingIn this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform wellknown feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.Department of Computer Science Universidade Federal de Minas Gerais UFMGSao Paulo State University UNESPInstitute of Computing University of Campinas UNICAMPSao Paulo State University UNESPUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerDos Santos, Jefersson A.Fornazari, Tamires [UNESP]Freire Silva, Thiago Sanna [UNESP]Morellato, Leonor Patricia [UNESP]Torres, Ricardo Da S.2018-12-11T17:32:01Z2018-12-11T17:32:01Z2017-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PRRS.2016.78670242016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016.http://hdl.handle.net/11449/17876910.1109/PRRS.2016.78670242-s2.0-85016993939Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016info:eu-repo/semantics/openAccess2021-10-23T21:47:05Zoai:repositorio.unesp.br:11449/178769Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:55:13.197755Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Towards vegetation species discrimination by using data-driven descriptors |
title |
Towards vegetation species discrimination by using data-driven descriptors |
spellingShingle |
Towards vegetation species discrimination by using data-driven descriptors Nogueira, Keiller Deep Learning Feature Learning High-resolution Images Image Classification Machine Learning Remote Sensing |
title_short |
Towards vegetation species discrimination by using data-driven descriptors |
title_full |
Towards vegetation species discrimination by using data-driven descriptors |
title_fullStr |
Towards vegetation species discrimination by using data-driven descriptors |
title_full_unstemmed |
Towards vegetation species discrimination by using data-driven descriptors |
title_sort |
Towards vegetation species discrimination by using data-driven descriptors |
author |
Nogueira, Keiller |
author_facet |
Nogueira, Keiller Dos Santos, Jefersson A. Fornazari, Tamires [UNESP] Freire Silva, Thiago Sanna [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo Da S. |
author_role |
author |
author2 |
Dos Santos, Jefersson A. Fornazari, Tamires [UNESP] Freire Silva, Thiago Sanna [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo Da S. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Minas Gerais (UFMG) Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Nogueira, Keiller Dos Santos, Jefersson A. Fornazari, Tamires [UNESP] Freire Silva, Thiago Sanna [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo Da S. |
dc.subject.por.fl_str_mv |
Deep Learning Feature Learning High-resolution Images Image Classification Machine Learning Remote Sensing |
topic |
Deep Learning Feature Learning High-resolution Images Image Classification Machine Learning Remote Sensing |
description |
In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform wellknown feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02-28 2018-12-11T17:32:01Z 2018-12-11T17:32:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PRRS.2016.7867024 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016. http://hdl.handle.net/11449/178769 10.1109/PRRS.2016.7867024 2-s2.0-85016993939 |
url |
http://dx.doi.org/10.1109/PRRS.2016.7867024 http://hdl.handle.net/11449/178769 |
identifier_str_mv |
2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016. 10.1109/PRRS.2016.7867024 2-s2.0-85016993939 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128290407317504 |