A singular Liouville equation on two-dimensional domains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s10231-023-01326-x http://hdl.handle.net/11449/247029 |
Resumo: | We prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely - Δ u= (- u-β+ f(u)) χ{u>} in Ω ⊂ R2 with Dirichlet boundary condition. The function f grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional Iϵ corresponding to the ϵ-perturbed equation - Δ u+ gϵ(u) = f(u) , where gϵ tends pointwisely to u-β as ϵ→ 0 +. We show that Iϵ possesses a critical point uϵ in H01(Ω), which converges to a genuine nontrivial nonnegative solution of the original problem as ϵ→ 0. We also address the problem with f(u) replaced by λf(u) , when the parameter λ> 0 is sufficiently large. We give examples. |
id |
UNSP_27992343941f427516e0299bb8f6419e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/247029 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A singular Liouville equation on two-dimensional domainscritical exponential growthCritical pointsSingular equationSubcriticalVariational methodsWe prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely - Δ u= (- u-β+ f(u)) χ{u>} in Ω ⊂ R2 with Dirichlet boundary condition. The function f grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional Iϵ corresponding to the ϵ-perturbed equation - Δ u+ gϵ(u) = f(u) , where gϵ tends pointwisely to u-β as ϵ→ 0 +. We show that Iϵ possesses a critical point uϵ in H01(Ω), which converges to a genuine nontrivial nonnegative solution of the original problem as ϵ→ 0. We also address the problem with f(u) replaced by λf(u) , when the parameter λ> 0 is sufficiently large. We give examples.Departamento de Matemática Universidade Estadual de Campinas IMECC, Rua Sérgio Buarque de Holanda, 651, SPDepartamento de Matemática e Computação Universidade Estadual Paulista- Unesp, SPDepartamento de Matemática e Computação Universidade Estadual Paulista- Unesp, SPUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (UNESP)Montenegro, MarceloStapenhorst, Matheus F. [UNESP]2023-07-29T12:57:09Z2023-07-29T12:57:09Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s10231-023-01326-xAnnali di Matematica Pura ed Applicata.1618-18910373-3114http://hdl.handle.net/11449/24702910.1007/s10231-023-01326-x2-s2.0-85150640313Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAnnali di Matematica Pura ed Applicatainfo:eu-repo/semantics/openAccess2023-07-29T12:57:09Zoai:repositorio.unesp.br:11449/247029Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:27:53.635025Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A singular Liouville equation on two-dimensional domains |
title |
A singular Liouville equation on two-dimensional domains |
spellingShingle |
A singular Liouville equation on two-dimensional domains Montenegro, Marcelo critical exponential growth Critical points Singular equation Subcritical Variational methods |
title_short |
A singular Liouville equation on two-dimensional domains |
title_full |
A singular Liouville equation on two-dimensional domains |
title_fullStr |
A singular Liouville equation on two-dimensional domains |
title_full_unstemmed |
A singular Liouville equation on two-dimensional domains |
title_sort |
A singular Liouville equation on two-dimensional domains |
author |
Montenegro, Marcelo |
author_facet |
Montenegro, Marcelo Stapenhorst, Matheus F. [UNESP] |
author_role |
author |
author2 |
Stapenhorst, Matheus F. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Montenegro, Marcelo Stapenhorst, Matheus F. [UNESP] |
dc.subject.por.fl_str_mv |
critical exponential growth Critical points Singular equation Subcritical Variational methods |
topic |
critical exponential growth Critical points Singular equation Subcritical Variational methods |
description |
We prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely - Δ u= (- u-β+ f(u)) χ{u>} in Ω ⊂ R2 with Dirichlet boundary condition. The function f grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional Iϵ corresponding to the ϵ-perturbed equation - Δ u+ gϵ(u) = f(u) , where gϵ tends pointwisely to u-β as ϵ→ 0 +. We show that Iϵ possesses a critical point uϵ in H01(Ω), which converges to a genuine nontrivial nonnegative solution of the original problem as ϵ→ 0. We also address the problem with f(u) replaced by λf(u) , when the parameter λ> 0 is sufficiently large. We give examples. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-29T12:57:09Z 2023-07-29T12:57:09Z 2023-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s10231-023-01326-x Annali di Matematica Pura ed Applicata. 1618-1891 0373-3114 http://hdl.handle.net/11449/247029 10.1007/s10231-023-01326-x 2-s2.0-85150640313 |
url |
http://dx.doi.org/10.1007/s10231-023-01326-x http://hdl.handle.net/11449/247029 |
identifier_str_mv |
Annali di Matematica Pura ed Applicata. 1618-1891 0373-3114 10.1007/s10231-023-01326-x 2-s2.0-85150640313 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Annali di Matematica Pura ed Applicata |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128936202207232 |