A singular Liouville equation on two-dimensional domains

Detalhes bibliográficos
Autor(a) principal: Montenegro, Marcelo
Data de Publicação: 2023
Outros Autores: Stapenhorst, Matheus F. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10231-023-01326-x
http://hdl.handle.net/11449/247029
Resumo: We prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely - Δ u= (- u-β+ f(u)) χ{u>} in Ω ⊂ R2 with Dirichlet boundary condition. The function f grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional Iϵ corresponding to the ϵ-perturbed equation - Δ u+ gϵ(u) = f(u) , where gϵ tends pointwisely to u-β as ϵ→ 0 +. We show that Iϵ possesses a critical point uϵ in H01(Ω), which converges to a genuine nontrivial nonnegative solution of the original problem as ϵ→ 0. We also address the problem with f(u) replaced by λf(u) , when the parameter λ> 0 is sufficiently large. We give examples.
id UNSP_27992343941f427516e0299bb8f6419e
oai_identifier_str oai:repositorio.unesp.br:11449/247029
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A singular Liouville equation on two-dimensional domainscritical exponential growthCritical pointsSingular equationSubcriticalVariational methodsWe prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely - Δ u= (- u-β+ f(u)) χ{u>} in Ω ⊂ R2 with Dirichlet boundary condition. The function f grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional Iϵ corresponding to the ϵ-perturbed equation - Δ u+ gϵ(u) = f(u) , where gϵ tends pointwisely to u-β as ϵ→ 0 +. We show that Iϵ possesses a critical point uϵ in H01(Ω), which converges to a genuine nontrivial nonnegative solution of the original problem as ϵ→ 0. We also address the problem with f(u) replaced by λf(u) , when the parameter λ> 0 is sufficiently large. We give examples.Departamento de Matemática Universidade Estadual de Campinas IMECC, Rua Sérgio Buarque de Holanda, 651, SPDepartamento de Matemática e Computação Universidade Estadual Paulista- Unesp, SPDepartamento de Matemática e Computação Universidade Estadual Paulista- Unesp, SPUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (UNESP)Montenegro, MarceloStapenhorst, Matheus F. [UNESP]2023-07-29T12:57:09Z2023-07-29T12:57:09Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s10231-023-01326-xAnnali di Matematica Pura ed Applicata.1618-18910373-3114http://hdl.handle.net/11449/24702910.1007/s10231-023-01326-x2-s2.0-85150640313Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAnnali di Matematica Pura ed Applicatainfo:eu-repo/semantics/openAccess2023-07-29T12:57:09Zoai:repositorio.unesp.br:11449/247029Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:27:53.635025Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A singular Liouville equation on two-dimensional domains
title A singular Liouville equation on two-dimensional domains
spellingShingle A singular Liouville equation on two-dimensional domains
Montenegro, Marcelo
critical exponential growth
Critical points
Singular equation
Subcritical
Variational methods
title_short A singular Liouville equation on two-dimensional domains
title_full A singular Liouville equation on two-dimensional domains
title_fullStr A singular Liouville equation on two-dimensional domains
title_full_unstemmed A singular Liouville equation on two-dimensional domains
title_sort A singular Liouville equation on two-dimensional domains
author Montenegro, Marcelo
author_facet Montenegro, Marcelo
Stapenhorst, Matheus F. [UNESP]
author_role author
author2 Stapenhorst, Matheus F. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Montenegro, Marcelo
Stapenhorst, Matheus F. [UNESP]
dc.subject.por.fl_str_mv critical exponential growth
Critical points
Singular equation
Subcritical
Variational methods
topic critical exponential growth
Critical points
Singular equation
Subcritical
Variational methods
description We prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely - Δ u= (- u-β+ f(u)) χ{u>} in Ω ⊂ R2 with Dirichlet boundary condition. The function f grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional Iϵ corresponding to the ϵ-perturbed equation - Δ u+ gϵ(u) = f(u) , where gϵ tends pointwisely to u-β as ϵ→ 0 +. We show that Iϵ possesses a critical point uϵ in H01(Ω), which converges to a genuine nontrivial nonnegative solution of the original problem as ϵ→ 0. We also address the problem with f(u) replaced by λf(u) , when the parameter λ> 0 is sufficiently large. We give examples.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T12:57:09Z
2023-07-29T12:57:09Z
2023-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10231-023-01326-x
Annali di Matematica Pura ed Applicata.
1618-1891
0373-3114
http://hdl.handle.net/11449/247029
10.1007/s10231-023-01326-x
2-s2.0-85150640313
url http://dx.doi.org/10.1007/s10231-023-01326-x
http://hdl.handle.net/11449/247029
identifier_str_mv Annali di Matematica Pura ed Applicata.
1618-1891
0373-3114
10.1007/s10231-023-01326-x
2-s2.0-85150640313
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Annali di Matematica Pura ed Applicata
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128936202207232