Definition and implementation of a new service for precise GNSS positioning

Detalhes bibliográficos
Autor(a) principal: Oliveira Junior, Paulo Sergio de
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/152111
Resumo: PPP (Precise Point Positioning) is a positioning method by GNSS (Global Navigation Satellite Systems), based on SSR (State Space Representation) concept that can provide centimeter accuracy solutions. Real-time PPP (RT-PPP) is possible thanks to the availability of precise products, for orbits and clocks, provided by the International GNSS Service (IGS), as well as by its analysis centers such as CNES (Center National d'Etudes Spatiales). One of the remaining challenges on RT-PPP is the mitigation of atmospheric effects (troposphere and ionosphere) on GNSS signals. Thanks to recent improvements in atmospheric models, RT-PPP can be enhanced, allowing accuracy and centimeter initialization time, comparable to the current NRTK (Network Real-Time Kinematic) method. Such performance depends on topology of permanent stations networks and atmospheric conditions. The main objective of this project is to study the RT-PPP and the optimized infrastructure in terms of costs and benefits to realize the method using atmospheric corrections. Therefore, different configurations of a dense and regular GNSS network existing in France, the Orpheon network, are used. This network has about 160 sites and is owned by Geodata-Diffusion (Hexagon Geosystems). The work was divided into two main stages. Initially, ‘float PPP-RTK’ was evaluated, it corresponds to RT-PPP with improvements resulting from network corrections, although with ambiguities kept float. Further on, network corrections are applied to improve “PPP-RTK” where ambiguities are fixed to their integer values. For the float PPP-RTK, a modified version of the RTKLib 2.4.3 (beta) package is used to take into account for the network corrections. First-order ionospheric effects were eliminated by the iono-free combination and zenith tropospheric delay estimated. The corrections were applied by introducing a priori constrained tropospheric parameters. Periods with different tropospheric conditions were chosen to carry out the study. Adaptive modeling based on OFCs (Optimal Fitting Coefficients) has been developed to describe the behavior of the troposphere, using estimates of tropospheric delays for Orpheon stations. This solution allows one-way communication between the server and the user. The quality of tropospheric corrections is evaluated by comparison to external tropospheric products. The gains achieved in convergence time to 10 centimeters accuracy were statistically quantified. Network topology was assessed by reducing the number of reference stations (up to 75%) using a sparse Orpheon network configuration to perform tropospheric modeling. This did not degrade the tropospheric corrections and similar performances were obtained on the user side. In the second step, PPP-RTK is realized using the PPP-Wizard 1.3 software and CNES real-time products for orbits, clocks and phase biases of satellites. RT-IPPP (Real-Time Integer PPP) is performed with estimation of tropospheric and ionospheric delays. Ionospheric and tropospheric corrections are introduced as a priori parameters constrained to the PPP-RTK of the user. To generate ionospheric corrections, it was implemented a solution aligned with RTCM (Real-Time Maritime Services) conventions, regarding the transmission of ionospheric parameters SSR, which is a standard Inverse Distance Weighting (IDW) algorithm. The choice of the periods for this experiment was made mainly with respect to the ionospheric activity. The comparison of the atmospheric corrections with the external products and the evaluation of different network topologies (dense and sparse) were also carried out in this stage. Statistically, the standard RT-IPPP takes ~ 25 min to achieve a 10 cm horizontal accuracy, which is significantly improved by our method: 46% (convergence in 14 min) with dense network corrections and 24% (convergence in 19 min) with the sparse network. Nevertheless, vertical positioning sees its convergence time slightly increased, especially when corrections are used from a sparse network solution. However, improvements in horizontal positioning due to external SSR corrections from a (dense or sparse) network are promising and may be useful for applications that depend primarily on horizontal positioning.
id UNSP_27a995e6ac591331c0064ce36d1844c8
oai_identifier_str oai:repositorio.unesp.br:11449/152111
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Definition and implementation of a new service for precise GNSS positioningDefinição e implementação de um novo serviço para posicionamento GNSS precisoGNSSPPP-RTKZWDTroposphereIonosphereAmbiguity resolutionModelingReference networkTroposphèreIonosphèreModèlesRéseau de référenceRésolution des ambiguïtésTroposferaIonosferaModelosRede de referênciaResolução das ambiguidadesPPP (Precise Point Positioning) is a positioning method by GNSS (Global Navigation Satellite Systems), based on SSR (State Space Representation) concept that can provide centimeter accuracy solutions. Real-time PPP (RT-PPP) is possible thanks to the availability of precise products, for orbits and clocks, provided by the International GNSS Service (IGS), as well as by its analysis centers such as CNES (Center National d'Etudes Spatiales). One of the remaining challenges on RT-PPP is the mitigation of atmospheric effects (troposphere and ionosphere) on GNSS signals. Thanks to recent improvements in atmospheric models, RT-PPP can be enhanced, allowing accuracy and centimeter initialization time, comparable to the current NRTK (Network Real-Time Kinematic) method. Such performance depends on topology of permanent stations networks and atmospheric conditions. The main objective of this project is to study the RT-PPP and the optimized infrastructure in terms of costs and benefits to realize the method using atmospheric corrections. Therefore, different configurations of a dense and regular GNSS network existing in France, the Orpheon network, are used. This network has about 160 sites and is owned by Geodata-Diffusion (Hexagon Geosystems). The work was divided into two main stages. Initially, ‘float PPP-RTK’ was evaluated, it corresponds to RT-PPP with improvements resulting from network corrections, although with ambiguities kept float. Further on, network corrections are applied to improve “PPP-RTK” where ambiguities are fixed to their integer values. For the float PPP-RTK, a modified version of the RTKLib 2.4.3 (beta) package is used to take into account for the network corrections. First-order ionospheric effects were eliminated by the iono-free combination and zenith tropospheric delay estimated. The corrections were applied by introducing a priori constrained tropospheric parameters. Periods with different tropospheric conditions were chosen to carry out the study. Adaptive modeling based on OFCs (Optimal Fitting Coefficients) has been developed to describe the behavior of the troposphere, using estimates of tropospheric delays for Orpheon stations. This solution allows one-way communication between the server and the user. The quality of tropospheric corrections is evaluated by comparison to external tropospheric products. The gains achieved in convergence time to 10 centimeters accuracy were statistically quantified. Network topology was assessed by reducing the number of reference stations (up to 75%) using a sparse Orpheon network configuration to perform tropospheric modeling. This did not degrade the tropospheric corrections and similar performances were obtained on the user side. In the second step, PPP-RTK is realized using the PPP-Wizard 1.3 software and CNES real-time products for orbits, clocks and phase biases of satellites. RT-IPPP (Real-Time Integer PPP) is performed with estimation of tropospheric and ionospheric delays. Ionospheric and tropospheric corrections are introduced as a priori parameters constrained to the PPP-RTK of the user. To generate ionospheric corrections, it was implemented a solution aligned with RTCM (Real-Time Maritime Services) conventions, regarding the transmission of ionospheric parameters SSR, which is a standard Inverse Distance Weighting (IDW) algorithm. The choice of the periods for this experiment was made mainly with respect to the ionospheric activity. The comparison of the atmospheric corrections with the external products and the evaluation of different network topologies (dense and sparse) were also carried out in this stage. Statistically, the standard RT-IPPP takes ~ 25 min to achieve a 10 cm horizontal accuracy, which is significantly improved by our method: 46% (convergence in 14 min) with dense network corrections and 24% (convergence in 19 min) with the sparse network. Nevertheless, vertical positioning sees its convergence time slightly increased, especially when corrections are used from a sparse network solution. However, improvements in horizontal positioning due to external SSR corrections from a (dense or sparse) network are promising and may be useful for applications that depend primarily on horizontal positioning.O PPP (Precise Point Positioning) é um método de posicionamento pelo GNSS (Global Navigation Satellite Systems), baseado no conceito SSR (State Space Representation) o qual pode fornecer soluções de acurácia centimétrica. O PPP em tempo real (RT-PPP) é possível graças à disponibilidade de produtos precisos, para órbitas e relógios, fornecidos pelo IGS (International GNSS Service), bem como por seus centros de análise, como o CNES (Centre National d’Etudes Spatiales). Um dos desafios restantes no RT-PPP é a mitigação dos efeitos atmosféricos (troposfera e ionosfera) nos sinais GNSS. Graças às melhorias recentes nos modelos atmosféricos, o RT-PPP pode ser aprimorado, permitindo tempo de inicialização com acurácia centimétrica, comparável ao atual método NRTK (Network Real-Time Kinematic). Esse desempenho depende da topologia das redes de estações permanentes e das condições atmosféricas. O objetivo principal deste projeto é estudar o RT-PPP e a infraestrutura optimizada em termos de custos e benefícios para realizar o método usando correções atmosféricas. Portanto, são utilizadas diferentes configurações de uma rede GNSS densa e regular existente na França, a rede Orphéon. Esta rede tem cerca de 160 estações, sendo propriedade da Geodata-Diffusion (Hexagon Geosystems). O trabalho foi dividido em duas etapas principais. Inicialmente, foi avaliado o "float PPP-RTK", que corresponde ao RT-PPP com melhorias resultantes de correções de rede, embora mantendo as ambiguidades como float. Em um segundo momento, as correções de rede são aplicadas para aprimorar o "PPP-RTK", onde ambiguidades são fixadas para seus valores inteiros. Para o float PPP-RTK, uma versão modificada do software RTKLib 2.4.3 (beta) é empregada de modo a levar em consideração as correções de rede. Os efeitos ionosféricos de primeira ordem são eliminados pela combinação iono-free e atraso zenital troposférico é estimado. As correções são aplicadas introduzindo parâmetros troposféricos a priori injuncionados. Períodos com diferentes condições troposféricas foram escolhidos para realizar o estudo. Uma modelagem adaptativa baseada em OFCs (Optimal Fitting Coefficients) foi implementada para descrever o comportamento da troposfera, utilizando estimativas de atraso troposférico para estações da rede Orphéon. Tal solução permite a comunicação unidirecional entre o servidor e o usuário. A qualidade das correções troposféricas foi avaliada através de comparação com produtos externos troposféricos. Os ganhos alcançados no tempo de convergência para acurácia de 10 centímetros foram quantificados estatisticamente. A topologia de rede foi avaliada reduzindo o número de estações de referência (em até 75%) usando uma configuração da rede Orphéon esparsa para realizar a modelagem troposférica. Isso não degradou as correções troposféricas e foram obtidas performances similares para os usuários simulados. Na segunda etapa, o PPP-RTK é realizado usando o software PPP-Wizard 1.3, bem como os produtos para tempo real do CNES de órbitas, relógios e biases de fase dos satélites. O RT-IPPP (Real-Time Integer PPP) é realizado com estimativa de atrasos troposféricos e ionosféricos. As correções ionosféricas e troposféricas são introduzidas como parâmetros a priori injuncionados no PPP-RTK do usuário. Para gerar correções ionosféricas, foi implementada uma solução alinhada com as convenções RTCM (Real-Time Maritime Services), em relação à transmissão de correções ionosféricas SSR, o qual é um algoritmo baseado na ponderação pelo inverso da distância (IDW – Inverse Distance Weighting). A escolha dos períodos para este experimento foi realizada principalmente em relação à atividade ionosférica. A comparação das correções atmosféricas com produtos externos, assim como a avaliação de diferentes topologias de rede (densa e esparsa) também foram realizadas nesta etapa. Estatisticamente, o RT-IPPP padrão leva ~ 25 min para alcançar uma acurácia horizontal de 10 cm, a qual é significativamente melhorada pelo método implementado: 46% (convergência em 14 min) com correções de rede densa e 24% (convergência em 19 min) com a rede esparsa. No entanto, o posicionamento vertical vê o seu tempo de convergência ligeiramente aumentado, especialmente quando as correções são usadas a partir de uma solução de rede esparsa. No entanto, as melhorias no posicionamento horizontal com o uso das correções de SSR externas de uma rede (densa ou esparsa) são promissoras e podem ser úteis para aplicações que dependem principalmente do posicionamento horizontal.Le PPP (Precise Point Positioning) est une méthode de positionnement par GNSS (Global Navigation Satellite Systems), basée sur le concept SSR (State Space Representation), qui peut générer solutions de précision centimétrique. Le PPP en temps réel (RT-PPP) est possible grâce à la disponibilité des produits précis, pour les orbites et horloges, fournis par l’IGS (International GNSS Service), ainsi que par ses centres d'analyse, tels que le CNES (Centre National d'Etudes Spatiales). Un des défis restants sur le RT-PPP est la mitigation des effets atmosphériques (troposphère et ionosphère) sur les signaux GNSS. Grâce aux améliorations récentes des modèles atmosphériques, le RT-PPP peut être amélioré, ce qui permet une précision et un temps d'initialisation au niveau du centimètre, comparables à la méthode NRTK (Network Real-Time Kinematic) actuelle. De telles performances dépendent de la topologie du réseau de stations GNSS permanentes et des conditions atmosphériques. L'objectif principal de ce projet est d'étudier le RT-PPP et l'infrastructure optimisée en termes de coûts et d'avantages pour réaliser la méthode en utilisant des corrections atmosphériques. Pour cela, différentes configurations d'un réseau GNSS dense et régulier existant en France, le réseau Orphéon, sont utilisées. Ce réseau compte environ 160 sites, propriété de Geodata-Diffusion (Hexagon Geosystems). Le travail est divisé en deux étapes principales. Dans un premier temps, le mode «PPP-RTK flottant» a été évalué, il correspond au RT-PPP avec des améliorations issues des corrections de réseau, mais avec les ambiguïtés flottantes. Ensuite, des corrections de réseau sont appliquées pour améliorer le mode « PPP-RTK » où les ambiguïtés sont fixées à leurs valeurs entières. Pour le PPP-RTK flottant, une version modifiée du package RTKLib 2.4.3 (beta) est utilisée pour prendre en compte les corrections réseau. Les effets ionosphériques de premier ordre ont été éliminés par la combinaison iono-free et le retard troposphérique zénithal est estimé. Les corrections ont été appliquées en introduisant des paramètres troposphériques a priori contraints. Des périodes avec différentes conditions troposphériques ont été choisies pour réaliser l'étude. Une modélisation adaptative basée sur les OFCs (Optimal Fitting Coefficients) a été mise en place pour décrire le comportement de la troposphère, en utilisant des estimations des retards troposphériques pour les stations Orphéon. Cette solution permet une communication mono-directionnelle entre le serveur et l'utilisateur. La qualité des corrections troposphériques est évaluée par comparaison avec des produits troposphériques externes. Les gains réalisés sur le temps de convergence pour obtenir un positionnement de 10 centimètres de précision ont été quantifiés statistiquement. La topologie du réseau a été évaluée, en réduisant le nombre de stations de référence (jusqu'à 75%), via une configuration de réseau Orphéon lâche pour effectuer la modélisation troposphérique. Cela n'a pas dégradé les corrections troposphériques et des performances similaires ont été obtenues du côté de l'utilisateur. Dans la deuxième étape, le PPP-RTK est réalisé grâce au logiciel PPP-Wizard 1.3 et avec les produits temps réel CNES pour les orbites, les horloges et les biais de phase des satellites. Le RT-IPPP (Real-Time Integer PPP) est réalisé avec estimation des délais troposphériques et ionosphériques. Les corrections ionosphériques et troposphériques sont introduites en tant que paramètres a priori contraints au PPP-RTK de l'utilisateur. Pour générer des corrections ionosphériques, il a été mis en place une solution alignée avec les conventions RTCM (Real-Time Maritime Services) pour la transmission des paramètres ionosphériques SSR, un algorithme standard d'interpolation à distance inversée (IDW – Inverse Distance Weighting). Le choix des périodes pour cette expérience a été fait principalement en regard de l'activité ionosphérique. La comparaison des corrections atmosphériques avec les produits externes et l'évaluation de différentes topologies de réseau (dense et lâche) ont également été effectuées dans cette étape. Statistiquement le RT-IPPP standard prend ~25 min pour atteindre une précision horizontale de 10 cm, ce que nous améliorons significativement par notre méthode : 46% (convergence en 14 min) avec le réseau dense et 24% (convergence en 19 min) avec le réseau restreint. Néanmoins le positionnement vertical voit son temps de convergence légèrement augmenté, en particulier lorsque l'on utilise des corrections à partir d'une solution de réseau lâche. Cependant, les améliorations apportées au positionnement horizontal dues aux corrections atmosphériques SSR externes provenant d’un réseau (dense ou lâche) sont prometteuses et peuvent être utiles pour les applications qui dépendent principalement du positionnement horizontal.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 229828/2013-2Universidade Estadual Paulista (Unesp)Monico, João Francisco GaleraMorel, LaurentUniversidade Estadual Paulista (Unesp)Oliveira Junior, Paulo Sergio de2017-11-17T17:10:17Z2017-11-17T17:10:17Z2017-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/15211100089432033004129043P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-20T12:34:26Zoai:repositorio.unesp.br:11449/152111Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:16:01.040807Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Definition and implementation of a new service for precise GNSS positioning
Definição e implementação de um novo serviço para posicionamento GNSS preciso
title Definition and implementation of a new service for precise GNSS positioning
spellingShingle Definition and implementation of a new service for precise GNSS positioning
Oliveira Junior, Paulo Sergio de
GNSS
PPP-RTK
ZWD
Troposphere
Ionosphere
Ambiguity resolution
Modeling
Reference network
Troposphère
Ionosphère
Modèles
Réseau de référence
Résolution des ambiguïtés
Troposfera
Ionosfera
Modelos
Rede de referência
Resolução das ambiguidades
title_short Definition and implementation of a new service for precise GNSS positioning
title_full Definition and implementation of a new service for precise GNSS positioning
title_fullStr Definition and implementation of a new service for precise GNSS positioning
title_full_unstemmed Definition and implementation of a new service for precise GNSS positioning
title_sort Definition and implementation of a new service for precise GNSS positioning
author Oliveira Junior, Paulo Sergio de
author_facet Oliveira Junior, Paulo Sergio de
author_role author
dc.contributor.none.fl_str_mv Monico, João Francisco Galera
Morel, Laurent
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Oliveira Junior, Paulo Sergio de
dc.subject.por.fl_str_mv GNSS
PPP-RTK
ZWD
Troposphere
Ionosphere
Ambiguity resolution
Modeling
Reference network
Troposphère
Ionosphère
Modèles
Réseau de référence
Résolution des ambiguïtés
Troposfera
Ionosfera
Modelos
Rede de referência
Resolução das ambiguidades
topic GNSS
PPP-RTK
ZWD
Troposphere
Ionosphere
Ambiguity resolution
Modeling
Reference network
Troposphère
Ionosphère
Modèles
Réseau de référence
Résolution des ambiguïtés
Troposfera
Ionosfera
Modelos
Rede de referência
Resolução das ambiguidades
description PPP (Precise Point Positioning) is a positioning method by GNSS (Global Navigation Satellite Systems), based on SSR (State Space Representation) concept that can provide centimeter accuracy solutions. Real-time PPP (RT-PPP) is possible thanks to the availability of precise products, for orbits and clocks, provided by the International GNSS Service (IGS), as well as by its analysis centers such as CNES (Center National d'Etudes Spatiales). One of the remaining challenges on RT-PPP is the mitigation of atmospheric effects (troposphere and ionosphere) on GNSS signals. Thanks to recent improvements in atmospheric models, RT-PPP can be enhanced, allowing accuracy and centimeter initialization time, comparable to the current NRTK (Network Real-Time Kinematic) method. Such performance depends on topology of permanent stations networks and atmospheric conditions. The main objective of this project is to study the RT-PPP and the optimized infrastructure in terms of costs and benefits to realize the method using atmospheric corrections. Therefore, different configurations of a dense and regular GNSS network existing in France, the Orpheon network, are used. This network has about 160 sites and is owned by Geodata-Diffusion (Hexagon Geosystems). The work was divided into two main stages. Initially, ‘float PPP-RTK’ was evaluated, it corresponds to RT-PPP with improvements resulting from network corrections, although with ambiguities kept float. Further on, network corrections are applied to improve “PPP-RTK” where ambiguities are fixed to their integer values. For the float PPP-RTK, a modified version of the RTKLib 2.4.3 (beta) package is used to take into account for the network corrections. First-order ionospheric effects were eliminated by the iono-free combination and zenith tropospheric delay estimated. The corrections were applied by introducing a priori constrained tropospheric parameters. Periods with different tropospheric conditions were chosen to carry out the study. Adaptive modeling based on OFCs (Optimal Fitting Coefficients) has been developed to describe the behavior of the troposphere, using estimates of tropospheric delays for Orpheon stations. This solution allows one-way communication between the server and the user. The quality of tropospheric corrections is evaluated by comparison to external tropospheric products. The gains achieved in convergence time to 10 centimeters accuracy were statistically quantified. Network topology was assessed by reducing the number of reference stations (up to 75%) using a sparse Orpheon network configuration to perform tropospheric modeling. This did not degrade the tropospheric corrections and similar performances were obtained on the user side. In the second step, PPP-RTK is realized using the PPP-Wizard 1.3 software and CNES real-time products for orbits, clocks and phase biases of satellites. RT-IPPP (Real-Time Integer PPP) is performed with estimation of tropospheric and ionospheric delays. Ionospheric and tropospheric corrections are introduced as a priori parameters constrained to the PPP-RTK of the user. To generate ionospheric corrections, it was implemented a solution aligned with RTCM (Real-Time Maritime Services) conventions, regarding the transmission of ionospheric parameters SSR, which is a standard Inverse Distance Weighting (IDW) algorithm. The choice of the periods for this experiment was made mainly with respect to the ionospheric activity. The comparison of the atmospheric corrections with the external products and the evaluation of different network topologies (dense and sparse) were also carried out in this stage. Statistically, the standard RT-IPPP takes ~ 25 min to achieve a 10 cm horizontal accuracy, which is significantly improved by our method: 46% (convergence in 14 min) with dense network corrections and 24% (convergence in 19 min) with the sparse network. Nevertheless, vertical positioning sees its convergence time slightly increased, especially when corrections are used from a sparse network solution. However, improvements in horizontal positioning due to external SSR corrections from a (dense or sparse) network are promising and may be useful for applications that depend primarily on horizontal positioning.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-17T17:10:17Z
2017-11-17T17:10:17Z
2017-09-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/152111
000894320
33004129043P0
url http://hdl.handle.net/11449/152111
identifier_str_mv 000894320
33004129043P0
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128781019250688