How far did we get in face spoofing detection?

Detalhes bibliográficos
Autor(a) principal: Souza, Luiz
Data de Publicação: 2018
Outros Autores: Oliveira, Luciano, Pamplona, Mauricio, Papa, Joao [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.engappai.2018.04.013
http://hdl.handle.net/11449/160335
Resumo: The growing use of control access systems based on face recognition shed light over the need for even more accurate systems to detect face spoofing attacks. In this paper, an extensive analysis on face spoofing detection works published in the last decade is presented. The analyzed works are categorized by their fundamental parts, i.e., descriptors and classifiers. This structured survey also brings a comparative performance analysis of the works considering the most important public data sets in the field. The methodology followed in this work is particularly relevant to observe temporal evolution of the field, trends in the existing approaches, to discuss still opened issues, and to propose new perspectives for the future of face spoofing detection.
id UNSP_286b870cb7dd64e544f73df45ee6ecbb
oai_identifier_str oai:repositorio.unesp.br:11449/160335
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling How far did we get in face spoofing detection?Face spoofingFace recognitionSurveySpoofing attackThe growing use of control access systems based on face recognition shed light over the need for even more accurate systems to detect face spoofing attacks. In this paper, an extensive analysis on face spoofing detection works published in the last decade is presented. The analyzed works are categorized by their fundamental parts, i.e., descriptors and classifiers. This structured survey also brings a comparative performance analysis of the works considering the most important public data sets in the field. The methodology followed in this work is particularly relevant to observe temporal evolution of the field, trends in the existing approaches, to discuss still opened issues, and to propose new perspectives for the future of face spoofing detection.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Bahia, IVISION Lab, Salvador, BA, BrazilSao Paulo State Univ, RECOGNA Lab, Sao Paulo, BrazilSao Paulo State Univ, RECOGNA Lab, Sao Paulo, BrazilFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2016/19403-6CNPq: 306166/2014-3Elsevier B.V.Universidade Federal da Bahia (UFBA)Universidade Estadual Paulista (Unesp)Souza, LuizOliveira, LucianoPamplona, MauricioPapa, Joao [UNESP]2018-11-26T16:01:25Z2018-11-26T16:01:25Z2018-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article368-381application/pdfhttp://dx.doi.org/10.1016/j.engappai.2018.04.013Engineering Applications Of Artificial Intelligence. Oxford: Pergamon-elsevier Science Ltd, v. 72, p. 368-381, 2018.0952-1976http://hdl.handle.net/11449/16033510.1016/j.engappai.2018.04.013WOS:000434239000031WOS000434239000031.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEngineering Applications Of Artificial Intelligence0,874info:eu-repo/semantics/openAccess2023-11-10T06:09:13Zoai:repositorio.unesp.br:11449/160335Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:17:21.412568Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv How far did we get in face spoofing detection?
title How far did we get in face spoofing detection?
spellingShingle How far did we get in face spoofing detection?
Souza, Luiz
Face spoofing
Face recognition
Survey
Spoofing attack
title_short How far did we get in face spoofing detection?
title_full How far did we get in face spoofing detection?
title_fullStr How far did we get in face spoofing detection?
title_full_unstemmed How far did we get in face spoofing detection?
title_sort How far did we get in face spoofing detection?
author Souza, Luiz
author_facet Souza, Luiz
Oliveira, Luciano
Pamplona, Mauricio
Papa, Joao [UNESP]
author_role author
author2 Oliveira, Luciano
Pamplona, Mauricio
Papa, Joao [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal da Bahia (UFBA)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Souza, Luiz
Oliveira, Luciano
Pamplona, Mauricio
Papa, Joao [UNESP]
dc.subject.por.fl_str_mv Face spoofing
Face recognition
Survey
Spoofing attack
topic Face spoofing
Face recognition
Survey
Spoofing attack
description The growing use of control access systems based on face recognition shed light over the need for even more accurate systems to detect face spoofing attacks. In this paper, an extensive analysis on face spoofing detection works published in the last decade is presented. The analyzed works are categorized by their fundamental parts, i.e., descriptors and classifiers. This structured survey also brings a comparative performance analysis of the works considering the most important public data sets in the field. The methodology followed in this work is particularly relevant to observe temporal evolution of the field, trends in the existing approaches, to discuss still opened issues, and to propose new perspectives for the future of face spoofing detection.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26T16:01:25Z
2018-11-26T16:01:25Z
2018-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.engappai.2018.04.013
Engineering Applications Of Artificial Intelligence. Oxford: Pergamon-elsevier Science Ltd, v. 72, p. 368-381, 2018.
0952-1976
http://hdl.handle.net/11449/160335
10.1016/j.engappai.2018.04.013
WOS:000434239000031
WOS000434239000031.pdf
url http://dx.doi.org/10.1016/j.engappai.2018.04.013
http://hdl.handle.net/11449/160335
identifier_str_mv Engineering Applications Of Artificial Intelligence. Oxford: Pergamon-elsevier Science Ltd, v. 72, p. 368-381, 2018.
0952-1976
10.1016/j.engappai.2018.04.013
WOS:000434239000031
WOS000434239000031.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Engineering Applications Of Artificial Intelligence
0,874
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 368-381
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128785180000256