Automatic frontal sinus recognition in computed tomography images for person identification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.forsciint.2018.03.029 http://hdl.handle.net/11449/176097 |
Resumo: | In many cases of person identification the use of biometric features obtained from the hard tissues of the human body, such as teeth and bones, may be the only option. This paper presents a new method of person identification based on frontal sinus features, extracted from computed tomography (CT) images of the skull. In this method, the frontal sinus is automatically segmented in the CT image using an algorithm developed in this work. Next, shape features are extracted from both hemispheres of the segmented frontal sinus by using BAS (Beam Angle Statistics) method. Finally, L2 distance is used in order to recognize the frontal sinus and identify the person. The novel frontal sinus recognition method obtained 77.25% of identification accuracy when applied on a dataset composed of 310 CT images obtained from 31 people, and the automatic frontal sinus segmentation in CT images obtained a mean Cohen Kappa coefficient equal to 0.8852 when compared to the ground truth (manual segmentation). |
id |
UNSP_29a23a7e9fdb62f11c6d1a2201b4e0f4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/176097 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Automatic frontal sinus recognition in computed tomography images for person identificationBiometricsComputed tomographyFrontal sinus recognitionImage segmentationPerson identificationIn many cases of person identification the use of biometric features obtained from the hard tissues of the human body, such as teeth and bones, may be the only option. This paper presents a new method of person identification based on frontal sinus features, extracted from computed tomography (CT) images of the skull. In this method, the frontal sinus is automatically segmented in the CT image using an algorithm developed in this work. Next, shape features are extracted from both hemispheres of the segmented frontal sinus by using BAS (Beam Angle Statistics) method. Finally, L2 distance is used in order to recognize the frontal sinus and identify the person. The novel frontal sinus recognition method obtained 77.25% of identification accuracy when applied on a dataset composed of 310 CT images obtained from 31 people, and the automatic frontal sinus segmentation in CT images obtained a mean Cohen Kappa coefficient equal to 0.8852 when compared to the ground truth (manual segmentation).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)São Paulo State University (UNESP) Department of Computing Faculty of SciencesSão Paulo State University (UNESP) Department of Ophthalmology and Otorhinolaryngology Botucatu Medical SchoolSão Paulo State University (UNESP) Department of Computing Faculty of SciencesSão Paulo State University (UNESP) Department of Ophthalmology and Otorhinolaryngology Botucatu Medical SchoolUniversidade Estadual Paulista (Unesp)Souza, Luis A. de [UNESP]Marana, Aparecido N. [UNESP]Weber, Silke A.T. [UNESP]2018-12-11T17:19:02Z2018-12-11T17:19:02Z2018-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article252-264application/pdfhttp://dx.doi.org/10.1016/j.forsciint.2018.03.029Forensic Science International, v. 286, p. 252-264.1872-62830379-0738http://hdl.handle.net/11449/17609710.1016/j.forsciint.2018.03.0292-s2.0-850445823222-s2.0-85044582322.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengForensic Science International0,981info:eu-repo/semantics/openAccess2024-08-16T18:44:19Zoai:repositorio.unesp.br:11449/176097Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-16T18:44:19Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Automatic frontal sinus recognition in computed tomography images for person identification |
title |
Automatic frontal sinus recognition in computed tomography images for person identification |
spellingShingle |
Automatic frontal sinus recognition in computed tomography images for person identification Souza, Luis A. de [UNESP] Biometrics Computed tomography Frontal sinus recognition Image segmentation Person identification |
title_short |
Automatic frontal sinus recognition in computed tomography images for person identification |
title_full |
Automatic frontal sinus recognition in computed tomography images for person identification |
title_fullStr |
Automatic frontal sinus recognition in computed tomography images for person identification |
title_full_unstemmed |
Automatic frontal sinus recognition in computed tomography images for person identification |
title_sort |
Automatic frontal sinus recognition in computed tomography images for person identification |
author |
Souza, Luis A. de [UNESP] |
author_facet |
Souza, Luis A. de [UNESP] Marana, Aparecido N. [UNESP] Weber, Silke A.T. [UNESP] |
author_role |
author |
author2 |
Marana, Aparecido N. [UNESP] Weber, Silke A.T. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Souza, Luis A. de [UNESP] Marana, Aparecido N. [UNESP] Weber, Silke A.T. [UNESP] |
dc.subject.por.fl_str_mv |
Biometrics Computed tomography Frontal sinus recognition Image segmentation Person identification |
topic |
Biometrics Computed tomography Frontal sinus recognition Image segmentation Person identification |
description |
In many cases of person identification the use of biometric features obtained from the hard tissues of the human body, such as teeth and bones, may be the only option. This paper presents a new method of person identification based on frontal sinus features, extracted from computed tomography (CT) images of the skull. In this method, the frontal sinus is automatically segmented in the CT image using an algorithm developed in this work. Next, shape features are extracted from both hemispheres of the segmented frontal sinus by using BAS (Beam Angle Statistics) method. Finally, L2 distance is used in order to recognize the frontal sinus and identify the person. The novel frontal sinus recognition method obtained 77.25% of identification accuracy when applied on a dataset composed of 310 CT images obtained from 31 people, and the automatic frontal sinus segmentation in CT images obtained a mean Cohen Kappa coefficient equal to 0.8852 when compared to the ground truth (manual segmentation). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:19:02Z 2018-12-11T17:19:02Z 2018-05-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.forsciint.2018.03.029 Forensic Science International, v. 286, p. 252-264. 1872-6283 0379-0738 http://hdl.handle.net/11449/176097 10.1016/j.forsciint.2018.03.029 2-s2.0-85044582322 2-s2.0-85044582322.pdf |
url |
http://dx.doi.org/10.1016/j.forsciint.2018.03.029 http://hdl.handle.net/11449/176097 |
identifier_str_mv |
Forensic Science International, v. 286, p. 252-264. 1872-6283 0379-0738 10.1016/j.forsciint.2018.03.029 2-s2.0-85044582322 2-s2.0-85044582322.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Forensic Science International 0,981 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
252-264 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128184660525056 |