Automatic frontal sinus recognition in computed tomography images for person identification

Detalhes bibliográficos
Autor(a) principal: Souza, Luis A. de [UNESP]
Data de Publicação: 2018
Outros Autores: Marana, Aparecido N. [UNESP], Weber, Silke A.T. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.forsciint.2018.03.029
http://hdl.handle.net/11449/176097
Resumo: In many cases of person identification the use of biometric features obtained from the hard tissues of the human body, such as teeth and bones, may be the only option. This paper presents a new method of person identification based on frontal sinus features, extracted from computed tomography (CT) images of the skull. In this method, the frontal sinus is automatically segmented in the CT image using an algorithm developed in this work. Next, shape features are extracted from both hemispheres of the segmented frontal sinus by using BAS (Beam Angle Statistics) method. Finally, L2 distance is used in order to recognize the frontal sinus and identify the person. The novel frontal sinus recognition method obtained 77.25% of identification accuracy when applied on a dataset composed of 310 CT images obtained from 31 people, and the automatic frontal sinus segmentation in CT images obtained a mean Cohen Kappa coefficient equal to 0.8852 when compared to the ground truth (manual segmentation).
id UNSP_29a23a7e9fdb62f11c6d1a2201b4e0f4
oai_identifier_str oai:repositorio.unesp.br:11449/176097
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Automatic frontal sinus recognition in computed tomography images for person identificationBiometricsComputed tomographyFrontal sinus recognitionImage segmentationPerson identificationIn many cases of person identification the use of biometric features obtained from the hard tissues of the human body, such as teeth and bones, may be the only option. This paper presents a new method of person identification based on frontal sinus features, extracted from computed tomography (CT) images of the skull. In this method, the frontal sinus is automatically segmented in the CT image using an algorithm developed in this work. Next, shape features are extracted from both hemispheres of the segmented frontal sinus by using BAS (Beam Angle Statistics) method. Finally, L2 distance is used in order to recognize the frontal sinus and identify the person. The novel frontal sinus recognition method obtained 77.25% of identification accuracy when applied on a dataset composed of 310 CT images obtained from 31 people, and the automatic frontal sinus segmentation in CT images obtained a mean Cohen Kappa coefficient equal to 0.8852 when compared to the ground truth (manual segmentation).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)São Paulo State University (UNESP) Department of Computing Faculty of SciencesSão Paulo State University (UNESP) Department of Ophthalmology and Otorhinolaryngology Botucatu Medical SchoolSão Paulo State University (UNESP) Department of Computing Faculty of SciencesSão Paulo State University (UNESP) Department of Ophthalmology and Otorhinolaryngology Botucatu Medical SchoolUniversidade Estadual Paulista (Unesp)Souza, Luis A. de [UNESP]Marana, Aparecido N. [UNESP]Weber, Silke A.T. [UNESP]2018-12-11T17:19:02Z2018-12-11T17:19:02Z2018-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article252-264application/pdfhttp://dx.doi.org/10.1016/j.forsciint.2018.03.029Forensic Science International, v. 286, p. 252-264.1872-62830379-0738http://hdl.handle.net/11449/17609710.1016/j.forsciint.2018.03.0292-s2.0-850445823222-s2.0-85044582322.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengForensic Science International0,981info:eu-repo/semantics/openAccess2024-08-16T18:44:19Zoai:repositorio.unesp.br:11449/176097Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-16T18:44:19Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Automatic frontal sinus recognition in computed tomography images for person identification
title Automatic frontal sinus recognition in computed tomography images for person identification
spellingShingle Automatic frontal sinus recognition in computed tomography images for person identification
Souza, Luis A. de [UNESP]
Biometrics
Computed tomography
Frontal sinus recognition
Image segmentation
Person identification
title_short Automatic frontal sinus recognition in computed tomography images for person identification
title_full Automatic frontal sinus recognition in computed tomography images for person identification
title_fullStr Automatic frontal sinus recognition in computed tomography images for person identification
title_full_unstemmed Automatic frontal sinus recognition in computed tomography images for person identification
title_sort Automatic frontal sinus recognition in computed tomography images for person identification
author Souza, Luis A. de [UNESP]
author_facet Souza, Luis A. de [UNESP]
Marana, Aparecido N. [UNESP]
Weber, Silke A.T. [UNESP]
author_role author
author2 Marana, Aparecido N. [UNESP]
Weber, Silke A.T. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Souza, Luis A. de [UNESP]
Marana, Aparecido N. [UNESP]
Weber, Silke A.T. [UNESP]
dc.subject.por.fl_str_mv Biometrics
Computed tomography
Frontal sinus recognition
Image segmentation
Person identification
topic Biometrics
Computed tomography
Frontal sinus recognition
Image segmentation
Person identification
description In many cases of person identification the use of biometric features obtained from the hard tissues of the human body, such as teeth and bones, may be the only option. This paper presents a new method of person identification based on frontal sinus features, extracted from computed tomography (CT) images of the skull. In this method, the frontal sinus is automatically segmented in the CT image using an algorithm developed in this work. Next, shape features are extracted from both hemispheres of the segmented frontal sinus by using BAS (Beam Angle Statistics) method. Finally, L2 distance is used in order to recognize the frontal sinus and identify the person. The novel frontal sinus recognition method obtained 77.25% of identification accuracy when applied on a dataset composed of 310 CT images obtained from 31 people, and the automatic frontal sinus segmentation in CT images obtained a mean Cohen Kappa coefficient equal to 0.8852 when compared to the ground truth (manual segmentation).
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:19:02Z
2018-12-11T17:19:02Z
2018-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.forsciint.2018.03.029
Forensic Science International, v. 286, p. 252-264.
1872-6283
0379-0738
http://hdl.handle.net/11449/176097
10.1016/j.forsciint.2018.03.029
2-s2.0-85044582322
2-s2.0-85044582322.pdf
url http://dx.doi.org/10.1016/j.forsciint.2018.03.029
http://hdl.handle.net/11449/176097
identifier_str_mv Forensic Science International, v. 286, p. 252-264.
1872-6283
0379-0738
10.1016/j.forsciint.2018.03.029
2-s2.0-85044582322
2-s2.0-85044582322.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Forensic Science International
0,981
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 252-264
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128184660525056