Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/0253-6102/70/6/689 http://hdl.handle.net/11449/184257 |
Resumo: | In this work, we study the scalar quasinormal modes of a planar black hole metric in asymptotic anti-de Sitter spacetime derived from a particular Lovelock theory. The quasinormal frequencies are evaluated by adopting the Horowitz-Hubeny method as well as a matrix formalism. Also, the temporal evolution of small perturbations is studied by using finite difference method. The roles of the dimension of the spacetime, the parameter of the metric k, as well as the temperature of the background black hole, are discussed. It is observed that the particular form of the metric leads to quasinormal frequencies whose real parts are numerically insignificant. The black hole metric is found to be stable against small scalar perturbations. |
id |
UNSP_2a05c404f2d179cf9f8d134c108f7c69 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184257 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theoryquasinormal modesLovelock theoryHorowitz-Hubeny methodmatrix methodIn this work, we study the scalar quasinormal modes of a planar black hole metric in asymptotic anti-de Sitter spacetime derived from a particular Lovelock theory. The quasinormal frequencies are evaluated by adopting the Horowitz-Hubeny method as well as a matrix formalism. Also, the temporal evolution of small perturbations is studied by using finite difference method. The roles of the dimension of the spacetime, the parameter of the metric k, as well as the temperature of the background black hole, are discussed. It is observed that the particular form of the metric leads to quasinormal frequencies whose real parts are numerically insignificant. The black hole metric is found to be stable against small scalar perturbations.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)National Natural Science Foundation of China (NNSFC)Univ Estadual Paulista, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, BrazilChina Univ Geosci, Inst Geophys & Geoinformat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Hubei, Peoples R ChinaUniv Sao Paulo, Escola Engn Lorena, BR-12602810 Lorena, SP, BrazilUniv Estadual Paulista, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, BrazilNational Natural Science Foundation of China (NNSFC): 11805166Iop Publishing LtdUniversidade Estadual Paulista (Unesp)China Univ GeosciUniversidade de São Paulo (USP)Wen, Dan [UNESP]Lin, KaiQian, Wei-Liang [UNESP]2019-10-04T11:56:18Z2019-10-04T11:56:18Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article689-694http://dx.doi.org/10.1088/0253-6102/70/6/689Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 70, n. 6, p. 689-694, 2018.0253-6102http://hdl.handle.net/11449/18425710.1088/0253-6102/70/6/689WOS:000455133400006Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications In Theoretical Physicsinfo:eu-repo/semantics/openAccess2021-10-23T02:05:42Zoai:repositorio.unesp.br:11449/184257Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:59:45.017211Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory |
title |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory |
spellingShingle |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory Wen, Dan [UNESP] quasinormal modes Lovelock theory Horowitz-Hubeny method matrix method |
title_short |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory |
title_full |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory |
title_fullStr |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory |
title_full_unstemmed |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory |
title_sort |
Quasinormal Modes of the Planar Black Holes of a Particular Lovelock Theory |
author |
Wen, Dan [UNESP] |
author_facet |
Wen, Dan [UNESP] Lin, Kai Qian, Wei-Liang [UNESP] |
author_role |
author |
author2 |
Lin, Kai Qian, Wei-Liang [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) China Univ Geosci Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Wen, Dan [UNESP] Lin, Kai Qian, Wei-Liang [UNESP] |
dc.subject.por.fl_str_mv |
quasinormal modes Lovelock theory Horowitz-Hubeny method matrix method |
topic |
quasinormal modes Lovelock theory Horowitz-Hubeny method matrix method |
description |
In this work, we study the scalar quasinormal modes of a planar black hole metric in asymptotic anti-de Sitter spacetime derived from a particular Lovelock theory. The quasinormal frequencies are evaluated by adopting the Horowitz-Hubeny method as well as a matrix formalism. Also, the temporal evolution of small perturbations is studied by using finite difference method. The roles of the dimension of the spacetime, the parameter of the metric k, as well as the temperature of the background black hole, are discussed. It is observed that the particular form of the metric leads to quasinormal frequencies whose real parts are numerically insignificant. The black hole metric is found to be stable against small scalar perturbations. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 2019-10-04T11:56:18Z 2019-10-04T11:56:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/0253-6102/70/6/689 Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 70, n. 6, p. 689-694, 2018. 0253-6102 http://hdl.handle.net/11449/184257 10.1088/0253-6102/70/6/689 WOS:000455133400006 |
url |
http://dx.doi.org/10.1088/0253-6102/70/6/689 http://hdl.handle.net/11449/184257 |
identifier_str_mv |
Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 70, n. 6, p. 689-694, 2018. 0253-6102 10.1088/0253-6102/70/6/689 WOS:000455133400006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Communications In Theoretical Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
689-694 |
dc.publisher.none.fl_str_mv |
Iop Publishing Ltd |
publisher.none.fl_str_mv |
Iop Publishing Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129010098503680 |