Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil

Detalhes bibliográficos
Autor(a) principal: Bonini Neto, A. [UNESP]
Data de Publicação: 2019
Outros Autores: Bonini, C. S. B. [UNESP], Reis, A. R. [UNESP], Piazentin, J. C. [UNESP], Coletta, L. F. S. [UNESP], Putti, F. F. [UNESP], Heinrichs, R. [UNESP], Moreira, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/00103624.2019.1635144
http://hdl.handle.net/11449/185890
Resumo: The Oxisols is predominant in 54% of Brazilian territories and characterized by high weathering, relatively low chemical properties, and adequate structure. This study aimed to analyze the Oxisols through an Artificial Neural Network (ANN) with the purpose of estimating its recovery in function to soil chemical and physical attributes. The chemical attributes considered were: pH, cation exchange capacity (CEC), base saturation (V%), phosphorus (P), magnesium (Mg2+), and potassium (K+) and for the physical attributes, bulk density, soil porosity and soil resistance to penetration. The ANN used in this study is the Multilayer Perceptron (MLP), composed of three layers, input, intermediate and the output and with backpropagation training algorithm (supervised training). The intermediate layer is composed by 10 neurons and the layer of exit by 1 neuron, which has a function of informing the levels of chemical recovery (high, medium and low chemical attributes of the soil) and soil physics (recovered, partially recovered or not recovered). From the results obtained by ANN showed that the network reached an adequate training, with low mean square error (MSE). Therefore, ANN is a powerful and automatic alternative for the recovery estimation of degraded soils.
id UNSP_2ad89b7fe7603a5d781c153ca96a5642
oai_identifier_str oai:repositorio.unesp.br:11449/185890
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah SoilArtificial intelligencesoil chemistrysoil physicsrankingdegraded soilsThe Oxisols is predominant in 54% of Brazilian territories and characterized by high weathering, relatively low chemical properties, and adequate structure. This study aimed to analyze the Oxisols through an Artificial Neural Network (ANN) with the purpose of estimating its recovery in function to soil chemical and physical attributes. The chemical attributes considered were: pH, cation exchange capacity (CEC), base saturation (V%), phosphorus (P), magnesium (Mg2+), and potassium (K+) and for the physical attributes, bulk density, soil porosity and soil resistance to penetration. The ANN used in this study is the Multilayer Perceptron (MLP), composed of three layers, input, intermediate and the output and with backpropagation training algorithm (supervised training). The intermediate layer is composed by 10 neurons and the layer of exit by 1 neuron, which has a function of informing the levels of chemical recovery (high, medium and low chemical attributes of the soil) and soil physics (recovered, partially recovered or not recovered). From the results obtained by ANN showed that the network reached an adequate training, with low mean square error (MSE). Therefore, ANN is a powerful and automatic alternative for the recovery estimation of degraded soils.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Sci & Engn, Tupa, SP, BrazilSao Paulo State Univ, Dept Agr & Technol Sci, Dracena, SP, BrazilSao Paulo State Univ, Dept Agr, Botucatu, SP, BrazilEmbrapa Soja, Dept Soil Sci, Londrina, Parana, BrazilSao Paulo State Univ, Dept Sci & Engn, Tupa, SP, BrazilSao Paulo State Univ, Dept Agr & Technol Sci, Dracena, SP, BrazilSao Paulo State Univ, Dept Agr, Botucatu, SP, BrazilCNPq: 309380/2017-0Taylor & Francis IncUniversidade Estadual Paulista (Unesp)Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Bonini Neto, A. [UNESP]Bonini, C. S. B. [UNESP]Reis, A. R. [UNESP]Piazentin, J. C. [UNESP]Coletta, L. F. S. [UNESP]Putti, F. F. [UNESP]Heinrichs, R. [UNESP]Moreira, A.2019-10-04T12:39:32Z2019-10-04T12:39:32Z2019-06-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1785-1798http://dx.doi.org/10.1080/00103624.2019.1635144Communications In Soil Science And Plant Analysis. Philadelphia: Taylor & Francis Inc, v. 50, n. 14, p. 1785-1798, 2019.0010-3624http://hdl.handle.net/11449/18589010.1080/00103624.2019.1635144WOS:00047523950000179949687464834110000-0001-9461-9661Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications In Soil Science And Plant Analysisinfo:eu-repo/semantics/openAccess2024-06-10T14:49:03Zoai:repositorio.unesp.br:11449/185890Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:13:27.531939Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
title Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
spellingShingle Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
Bonini Neto, A. [UNESP]
Artificial intelligence
soil chemistry
soil physics
ranking
degraded soils
title_short Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
title_full Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
title_fullStr Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
title_full_unstemmed Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
title_sort Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil
author Bonini Neto, A. [UNESP]
author_facet Bonini Neto, A. [UNESP]
Bonini, C. S. B. [UNESP]
Reis, A. R. [UNESP]
Piazentin, J. C. [UNESP]
Coletta, L. F. S. [UNESP]
Putti, F. F. [UNESP]
Heinrichs, R. [UNESP]
Moreira, A.
author_role author
author2 Bonini, C. S. B. [UNESP]
Reis, A. R. [UNESP]
Piazentin, J. C. [UNESP]
Coletta, L. F. S. [UNESP]
Putti, F. F. [UNESP]
Heinrichs, R. [UNESP]
Moreira, A.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.author.fl_str_mv Bonini Neto, A. [UNESP]
Bonini, C. S. B. [UNESP]
Reis, A. R. [UNESP]
Piazentin, J. C. [UNESP]
Coletta, L. F. S. [UNESP]
Putti, F. F. [UNESP]
Heinrichs, R. [UNESP]
Moreira, A.
dc.subject.por.fl_str_mv Artificial intelligence
soil chemistry
soil physics
ranking
degraded soils
topic Artificial intelligence
soil chemistry
soil physics
ranking
degraded soils
description The Oxisols is predominant in 54% of Brazilian territories and characterized by high weathering, relatively low chemical properties, and adequate structure. This study aimed to analyze the Oxisols through an Artificial Neural Network (ANN) with the purpose of estimating its recovery in function to soil chemical and physical attributes. The chemical attributes considered were: pH, cation exchange capacity (CEC), base saturation (V%), phosphorus (P), magnesium (Mg2+), and potassium (K+) and for the physical attributes, bulk density, soil porosity and soil resistance to penetration. The ANN used in this study is the Multilayer Perceptron (MLP), composed of three layers, input, intermediate and the output and with backpropagation training algorithm (supervised training). The intermediate layer is composed by 10 neurons and the layer of exit by 1 neuron, which has a function of informing the levels of chemical recovery (high, medium and low chemical attributes of the soil) and soil physics (recovered, partially recovered or not recovered). From the results obtained by ANN showed that the network reached an adequate training, with low mean square error (MSE). Therefore, ANN is a powerful and automatic alternative for the recovery estimation of degraded soils.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T12:39:32Z
2019-10-04T12:39:32Z
2019-06-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/00103624.2019.1635144
Communications In Soil Science And Plant Analysis. Philadelphia: Taylor & Francis Inc, v. 50, n. 14, p. 1785-1798, 2019.
0010-3624
http://hdl.handle.net/11449/185890
10.1080/00103624.2019.1635144
WOS:000475239500001
7994968746483411
0000-0001-9461-9661
url http://dx.doi.org/10.1080/00103624.2019.1635144
http://hdl.handle.net/11449/185890
identifier_str_mv Communications In Soil Science And Plant Analysis. Philadelphia: Taylor & Francis Inc, v. 50, n. 14, p. 1785-1798, 2019.
0010-3624
10.1080/00103624.2019.1635144
WOS:000475239500001
7994968746483411
0000-0001-9461-9661
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Communications In Soil Science And Plant Analysis
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1785-1798
dc.publisher.none.fl_str_mv Taylor & Francis Inc
publisher.none.fl_str_mv Taylor & Francis Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128619769233408