The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-030-34713-0_16 http://hdl.handle.net/11449/228898 |
Resumo: | From the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit. |
id |
UNSP_2caf47b1f12dfd08ac51cc93ce4e10ac |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/228898 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A SystemInvariant sphereInvariant torusLinearly stable periodic orbitSprott A systemZero-Hopf bifurcationFrom the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit.Universidade Estadual Paulista (UNESP) Faculdade de Ciências e Tecnologia Departamento de Matemática e Computação, SPUniversidade Tecnológica Federal Do Paraná (UTFPR) Departamento Acadêmico de Matemática, PRUniversidade Estadual Paulista (UNESP) Faculdade de Ciências e Tecnologia Departamento de Matemática e Computação, SPUniversidade Estadual Paulista (UNESP)Universidade Tecnológica Federal Do Paraná (UTFPR)Messias, Marcelo [UNESP]Reinol, Alisson C.2022-04-29T08:29:09Z2022-04-29T08:29:09Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject157-165http://dx.doi.org/10.1007/978-3-030-34713-0_16Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165.http://hdl.handle.net/11449/22889810.1007/978-3-030-34713-0_162-s2.0-85100225715Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019info:eu-repo/semantics/openAccess2024-06-19T14:32:17Zoai:repositorio.unesp.br:11449/228898Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:30:39.545136Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System |
title |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System |
spellingShingle |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System Messias, Marcelo [UNESP] Invariant sphere Invariant torus Linearly stable periodic orbit Sprott A system Zero-Hopf bifurcation |
title_short |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System |
title_full |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System |
title_fullStr |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System |
title_full_unstemmed |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System |
title_sort |
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System |
author |
Messias, Marcelo [UNESP] |
author_facet |
Messias, Marcelo [UNESP] Reinol, Alisson C. |
author_role |
author |
author2 |
Reinol, Alisson C. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Tecnológica Federal Do Paraná (UTFPR) |
dc.contributor.author.fl_str_mv |
Messias, Marcelo [UNESP] Reinol, Alisson C. |
dc.subject.por.fl_str_mv |
Invariant sphere Invariant torus Linearly stable periodic orbit Sprott A system Zero-Hopf bifurcation |
topic |
Invariant sphere Invariant torus Linearly stable periodic orbit Sprott A system Zero-Hopf bifurcation |
description |
From the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2022-04-29T08:29:09Z 2022-04-29T08:29:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-030-34713-0_16 Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165. http://hdl.handle.net/11449/228898 10.1007/978-3-030-34713-0_16 2-s2.0-85100225715 |
url |
http://dx.doi.org/10.1007/978-3-030-34713-0_16 http://hdl.handle.net/11449/228898 |
identifier_str_mv |
Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165. 10.1007/978-3-030-34713-0_16 2-s2.0-85100225715 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
157-165 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128371027083264 |