The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System

Detalhes bibliográficos
Autor(a) principal: Messias, Marcelo [UNESP]
Data de Publicação: 2020
Outros Autores: Reinol, Alisson C.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-030-34713-0_16
http://hdl.handle.net/11449/228898
Resumo: From the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit.
id UNSP_2caf47b1f12dfd08ac51cc93ce4e10ac
oai_identifier_str oai:repositorio.unesp.br:11449/228898
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A SystemInvariant sphereInvariant torusLinearly stable periodic orbitSprott A systemZero-Hopf bifurcationFrom the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit.Universidade Estadual Paulista (UNESP) Faculdade de Ciências e Tecnologia Departamento de Matemática e Computação, SPUniversidade Tecnológica Federal Do Paraná (UTFPR) Departamento Acadêmico de Matemática, PRUniversidade Estadual Paulista (UNESP) Faculdade de Ciências e Tecnologia Departamento de Matemática e Computação, SPUniversidade Estadual Paulista (UNESP)Universidade Tecnológica Federal Do Paraná (UTFPR)Messias, Marcelo [UNESP]Reinol, Alisson C.2022-04-29T08:29:09Z2022-04-29T08:29:09Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject157-165http://dx.doi.org/10.1007/978-3-030-34713-0_16Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165.http://hdl.handle.net/11449/22889810.1007/978-3-030-34713-0_162-s2.0-85100225715Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019info:eu-repo/semantics/openAccess2024-06-19T14:32:17Zoai:repositorio.unesp.br:11449/228898Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:30:39.545136Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
title The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
spellingShingle The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
Messias, Marcelo [UNESP]
Invariant sphere
Invariant torus
Linearly stable periodic orbit
Sprott A system
Zero-Hopf bifurcation
title_short The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
title_full The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
title_fullStr The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
title_full_unstemmed The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
title_sort The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
author Messias, Marcelo [UNESP]
author_facet Messias, Marcelo [UNESP]
Reinol, Alisson C.
author_role author
author2 Reinol, Alisson C.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Tecnológica Federal Do Paraná (UTFPR)
dc.contributor.author.fl_str_mv Messias, Marcelo [UNESP]
Reinol, Alisson C.
dc.subject.por.fl_str_mv Invariant sphere
Invariant torus
Linearly stable periodic orbit
Sprott A system
Zero-Hopf bifurcation
topic Invariant sphere
Invariant torus
Linearly stable periodic orbit
Sprott A system
Zero-Hopf bifurcation
description From the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2022-04-29T08:29:09Z
2022-04-29T08:29:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-030-34713-0_16
Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165.
http://hdl.handle.net/11449/228898
10.1007/978-3-030-34713-0_16
2-s2.0-85100225715
url http://dx.doi.org/10.1007/978-3-030-34713-0_16
http://hdl.handle.net/11449/228898
identifier_str_mv Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165.
10.1007/978-3-030-34713-0_16
2-s2.0-85100225715
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 157-165
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128371027083264