On groups with cubic polynomial conditions

Detalhes bibliográficos
Autor(a) principal: Grishkov, A. [UNESP]
Data de Publicação: 2015
Outros Autores: Nunes, R., Sidki, S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jalgebra.2015.04.035
http://hdl.handle.net/11449/220370
Resumo: Let F<inf>d</inf> be the free group of rank d, freely generated by {y1,. . .,yd}, and let DFd be the group ring over an integral domain D. Given a subset E<inf>d</inf> of F<inf>d</inf> containing the generating set, assign to each s in E<inf>d</inf> a monic polynomial ps(x)=xn+cs,n-1xn-1+. . .+cs,1x+cs,0∈D[x] and define the quotient ringA(d,n,Ed)=DFd〈ps(s)|s∈Ed〉ideal. When ps(s) is cubic for all s, we construct a finite set E<inf>d</inf> such that A(d,n,Ed) has finite rank over an extension of D by inverses of some of the coefficients of the polynomials. When the polynomials are all equal to (x-1)<sup>3</sup> and D=Z[16], we construct a finite subset P<inf>d</inf> of F<inf>d</inf> such that the quotient ring A(d,3,Pd) has finite D-rank and its augmentation ideal is nilpotent. The set P<inf>2</inf> is {y1,y2,y1y2,y1-1y2,y12y2,y1y22,[y1,y2]} and we prove that (x-1)3=0 is satisfied by all elements in the image of F<inf>2</inf> in A(2,3,Pd).
id UNSP_2ec0960b1819818e568a6cc8177ea2b6
oai_identifier_str oai:repositorio.unesp.br:11449/220370
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On groups with cubic polynomial conditionsCubic conditions on groupsNon-commutative GroebnerUnipotent groupsLet F<inf>d</inf> be the free group of rank d, freely generated by {y1,. . .,yd}, and let DFd be the group ring over an integral domain D. Given a subset E<inf>d</inf> of F<inf>d</inf> containing the generating set, assign to each s in E<inf>d</inf> a monic polynomial ps(x)=xn+cs,n-1xn-1+. . .+cs,1x+cs,0∈D[x] and define the quotient ringA(d,n,Ed)=DFd〈ps(s)|s∈Ed〉ideal. When ps(s) is cubic for all s, we construct a finite set E<inf>d</inf> such that A(d,n,Ed) has finite rank over an extension of D by inverses of some of the coefficients of the polynomials. When the polynomials are all equal to (x-1)<sup>3</sup> and D=Z[16], we construct a finite subset P<inf>d</inf> of F<inf>d</inf> such that the quotient ring A(d,3,Pd) has finite D-rank and its augmentation ideal is nilpotent. The set P<inf>2</inf> is {y1,y2,y1y2,y1-1y2,y12y2,y1y22,[y1,y2]} and we prove that (x-1)3=0 is satisfied by all elements in the image of F<inf>2</inf> in A(2,3,Pd).Universidade Estadual de Sao PauloUniversidade Federal de GoiasDepartamento de Matemática, Universidade de BrasíliaUniversidade Estadual de Sao PauloUniversidade Estadual Paulista (UNESP)Universidade Federal de Goiás (UFG)Universidade de Brasília (UnB)Grishkov, A. [UNESP]Nunes, R.Sidki, S.2022-04-28T19:01:05Z2022-04-28T19:01:05Z2015-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article344-364http://dx.doi.org/10.1016/j.jalgebra.2015.04.035Journal of Algebra, v. 437, p. 344-364.1090-266X0021-8693http://hdl.handle.net/11449/22037010.1016/j.jalgebra.2015.04.0352-s2.0-84930181305Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Algebrainfo:eu-repo/semantics/openAccess2022-04-28T19:01:05Zoai:repositorio.unesp.br:11449/220370Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:28:47.015142Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On groups with cubic polynomial conditions
title On groups with cubic polynomial conditions
spellingShingle On groups with cubic polynomial conditions
Grishkov, A. [UNESP]
Cubic conditions on groups
Non-commutative Groebner
Unipotent groups
title_short On groups with cubic polynomial conditions
title_full On groups with cubic polynomial conditions
title_fullStr On groups with cubic polynomial conditions
title_full_unstemmed On groups with cubic polynomial conditions
title_sort On groups with cubic polynomial conditions
author Grishkov, A. [UNESP]
author_facet Grishkov, A. [UNESP]
Nunes, R.
Sidki, S.
author_role author
author2 Nunes, R.
Sidki, S.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Federal de Goiás (UFG)
Universidade de Brasília (UnB)
dc.contributor.author.fl_str_mv Grishkov, A. [UNESP]
Nunes, R.
Sidki, S.
dc.subject.por.fl_str_mv Cubic conditions on groups
Non-commutative Groebner
Unipotent groups
topic Cubic conditions on groups
Non-commutative Groebner
Unipotent groups
description Let F<inf>d</inf> be the free group of rank d, freely generated by {y1,. . .,yd}, and let DFd be the group ring over an integral domain D. Given a subset E<inf>d</inf> of F<inf>d</inf> containing the generating set, assign to each s in E<inf>d</inf> a monic polynomial ps(x)=xn+cs,n-1xn-1+. . .+cs,1x+cs,0∈D[x] and define the quotient ringA(d,n,Ed)=DFd〈ps(s)|s∈Ed〉ideal. When ps(s) is cubic for all s, we construct a finite set E<inf>d</inf> such that A(d,n,Ed) has finite rank over an extension of D by inverses of some of the coefficients of the polynomials. When the polynomials are all equal to (x-1)<sup>3</sup> and D=Z[16], we construct a finite subset P<inf>d</inf> of F<inf>d</inf> such that the quotient ring A(d,3,Pd) has finite D-rank and its augmentation ideal is nilpotent. The set P<inf>2</inf> is {y1,y2,y1y2,y1-1y2,y12y2,y1y22,[y1,y2]} and we prove that (x-1)3=0 is satisfied by all elements in the image of F<inf>2</inf> in A(2,3,Pd).
publishDate 2015
dc.date.none.fl_str_mv 2015-09-01
2022-04-28T19:01:05Z
2022-04-28T19:01:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jalgebra.2015.04.035
Journal of Algebra, v. 437, p. 344-364.
1090-266X
0021-8693
http://hdl.handle.net/11449/220370
10.1016/j.jalgebra.2015.04.035
2-s2.0-84930181305
url http://dx.doi.org/10.1016/j.jalgebra.2015.04.035
http://hdl.handle.net/11449/220370
identifier_str_mv Journal of Algebra, v. 437, p. 344-364.
1090-266X
0021-8693
10.1016/j.jalgebra.2015.04.035
2-s2.0-84930181305
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Algebra
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 344-364
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128518105595904