On groups with cubic polynomial conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jalgebra.2015.04.035 http://hdl.handle.net/11449/220370 |
Resumo: | Let F<inf>d</inf> be the free group of rank d, freely generated by {y1,. . .,yd}, and let DFd be the group ring over an integral domain D. Given a subset E<inf>d</inf> of F<inf>d</inf> containing the generating set, assign to each s in E<inf>d</inf> a monic polynomial ps(x)=xn+cs,n-1xn-1+. . .+cs,1x+cs,0∈D[x] and define the quotient ringA(d,n,Ed)=DFd〈ps(s)|s∈Ed〉ideal. When ps(s) is cubic for all s, we construct a finite set E<inf>d</inf> such that A(d,n,Ed) has finite rank over an extension of D by inverses of some of the coefficients of the polynomials. When the polynomials are all equal to (x-1)<sup>3</sup> and D=Z[16], we construct a finite subset P<inf>d</inf> of F<inf>d</inf> such that the quotient ring A(d,3,Pd) has finite D-rank and its augmentation ideal is nilpotent. The set P<inf>2</inf> is {y1,y2,y1y2,y1-1y2,y12y2,y1y22,[y1,y2]} and we prove that (x-1)3=0 is satisfied by all elements in the image of F<inf>2</inf> in A(2,3,Pd). |
id |
UNSP_2ec0960b1819818e568a6cc8177ea2b6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/220370 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On groups with cubic polynomial conditionsCubic conditions on groupsNon-commutative GroebnerUnipotent groupsLet F<inf>d</inf> be the free group of rank d, freely generated by {y1,. . .,yd}, and let DFd be the group ring over an integral domain D. Given a subset E<inf>d</inf> of F<inf>d</inf> containing the generating set, assign to each s in E<inf>d</inf> a monic polynomial ps(x)=xn+cs,n-1xn-1+. . .+cs,1x+cs,0∈D[x] and define the quotient ringA(d,n,Ed)=DFd〈ps(s)|s∈Ed〉ideal. When ps(s) is cubic for all s, we construct a finite set E<inf>d</inf> such that A(d,n,Ed) has finite rank over an extension of D by inverses of some of the coefficients of the polynomials. When the polynomials are all equal to (x-1)<sup>3</sup> and D=Z[16], we construct a finite subset P<inf>d</inf> of F<inf>d</inf> such that the quotient ring A(d,3,Pd) has finite D-rank and its augmentation ideal is nilpotent. The set P<inf>2</inf> is {y1,y2,y1y2,y1-1y2,y12y2,y1y22,[y1,y2]} and we prove that (x-1)3=0 is satisfied by all elements in the image of F<inf>2</inf> in A(2,3,Pd).Universidade Estadual de Sao PauloUniversidade Federal de GoiasDepartamento de Matemática, Universidade de BrasíliaUniversidade Estadual de Sao PauloUniversidade Estadual Paulista (UNESP)Universidade Federal de Goiás (UFG)Universidade de Brasília (UnB)Grishkov, A. [UNESP]Nunes, R.Sidki, S.2022-04-28T19:01:05Z2022-04-28T19:01:05Z2015-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article344-364http://dx.doi.org/10.1016/j.jalgebra.2015.04.035Journal of Algebra, v. 437, p. 344-364.1090-266X0021-8693http://hdl.handle.net/11449/22037010.1016/j.jalgebra.2015.04.0352-s2.0-84930181305Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Algebrainfo:eu-repo/semantics/openAccess2022-04-28T19:01:05Zoai:repositorio.unesp.br:11449/220370Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:28:47.015142Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On groups with cubic polynomial conditions |
title |
On groups with cubic polynomial conditions |
spellingShingle |
On groups with cubic polynomial conditions Grishkov, A. [UNESP] Cubic conditions on groups Non-commutative Groebner Unipotent groups |
title_short |
On groups with cubic polynomial conditions |
title_full |
On groups with cubic polynomial conditions |
title_fullStr |
On groups with cubic polynomial conditions |
title_full_unstemmed |
On groups with cubic polynomial conditions |
title_sort |
On groups with cubic polynomial conditions |
author |
Grishkov, A. [UNESP] |
author_facet |
Grishkov, A. [UNESP] Nunes, R. Sidki, S. |
author_role |
author |
author2 |
Nunes, R. Sidki, S. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Federal de Goiás (UFG) Universidade de Brasília (UnB) |
dc.contributor.author.fl_str_mv |
Grishkov, A. [UNESP] Nunes, R. Sidki, S. |
dc.subject.por.fl_str_mv |
Cubic conditions on groups Non-commutative Groebner Unipotent groups |
topic |
Cubic conditions on groups Non-commutative Groebner Unipotent groups |
description |
Let F<inf>d</inf> be the free group of rank d, freely generated by {y1,. . .,yd}, and let DFd be the group ring over an integral domain D. Given a subset E<inf>d</inf> of F<inf>d</inf> containing the generating set, assign to each s in E<inf>d</inf> a monic polynomial ps(x)=xn+cs,n-1xn-1+. . .+cs,1x+cs,0∈D[x] and define the quotient ringA(d,n,Ed)=DFd〈ps(s)|s∈Ed〉ideal. When ps(s) is cubic for all s, we construct a finite set E<inf>d</inf> such that A(d,n,Ed) has finite rank over an extension of D by inverses of some of the coefficients of the polynomials. When the polynomials are all equal to (x-1)<sup>3</sup> and D=Z[16], we construct a finite subset P<inf>d</inf> of F<inf>d</inf> such that the quotient ring A(d,3,Pd) has finite D-rank and its augmentation ideal is nilpotent. The set P<inf>2</inf> is {y1,y2,y1y2,y1-1y2,y12y2,y1y22,[y1,y2]} and we prove that (x-1)3=0 is satisfied by all elements in the image of F<inf>2</inf> in A(2,3,Pd). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-01 2022-04-28T19:01:05Z 2022-04-28T19:01:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jalgebra.2015.04.035 Journal of Algebra, v. 437, p. 344-364. 1090-266X 0021-8693 http://hdl.handle.net/11449/220370 10.1016/j.jalgebra.2015.04.035 2-s2.0-84930181305 |
url |
http://dx.doi.org/10.1016/j.jalgebra.2015.04.035 http://hdl.handle.net/11449/220370 |
identifier_str_mv |
Journal of Algebra, v. 437, p. 344-364. 1090-266X 0021-8693 10.1016/j.jalgebra.2015.04.035 2-s2.0-84930181305 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Algebra |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
344-364 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128518105595904 |