Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/140144 |
Resumo: | The mono-n-butyl phthalate (MBP) is the active metabolite of di-n-butyl phthalate (DBP), a plasticizer commonly used for industrial products, including medical devices, flexible plastics and cosmetics, has been described as an endocrine disruptor with estrogenic and anti-androgenic function, depending on the dose and the exposure period, particularly by interfering with the development of the male reproductive system. It is believed that some of the effects of endocrine disruptors are mediated by the non-classical estrogen G protein-coupled receptor - GPER1 (GPR30). In view of the worldwide problems regarding to degradation of plastics and their dispersion in the environment, and earlier evidences showed that phthalates have effects on the development and maturation of the prostate increasing the incidence of inflammatory and dysplastic lesions in rodents, this study aimed to evaluate the effect of MBP on androgen dependent prostate cancer cells (LNCaP) by modulating the activity of GPER1 (through its antagonist, G15). The LNCaP cells, maintained in RPMI culture, were expanded and treated in an incubator with 5% CO2 humid atmosphere at 37 ° C. The MBP dose to be used was 10 uM, selected from the following MTT cytotoxicity test (3- [4.5-dimethylthiazol-2yl] -2,5-diphenyl tetrazolina bromide). Thus were established the following treatment protocols: control: RPMI + 0.03% DMSO; MBP: 10 uM of MBP diluted in DMSO (0.03%) + RPMI; G15: 8 uM of G15 diluted in DMSO (0.03%) + RPMI; M+G: 8 uM of G15 + 10 uM of MBP (diluted in 0.03% DMSO) + RPMI. For the treatment of MBP together with G15 (M+G), the GPER1 antagonist was added to the medium 30 minutes prior to MBP. Cells were incubated under the described treatments at four different times: 15 minutes 45 minutes, 3 hours and 12 hours. After exposure, the cells were processed for RNA and protein extraction, techniques designed to Reaction Polymerase Chain Real Time After reverse transcription (RT-qPCR) and Western blotting, respectively. At all times it was evaluated the profile of protein expression for GPER1, pErk1 / Erk2, PI3K and pAKT to the overall assessment of the activation process of pathways mediated by GPER1. After this step, and showing a rapid effect of MBP in GPER1 activation, we selected the 12-hour time to assess possible late effects of treatment on genes and related proteins via the GPER1 and other key pathways in tumor progression process. Using the same treatment protocol was performed an transwell migration assay by plating 1x105 cells into translucent inserts were subsequently assessed by fluorescence microscopy for the quantification of the cells that passed through the pores. The transwell cell migration assay showed that treatment with MBP was able to increase the migration of LNCaP cells, whereas the other treatments were similar to control. Initial data showed that the MBP was able to increase the expression of GPER1, pERK-1/-2 after 45 minutes of exposure, but did not alter the expression of PI3K and pAKT. After 3 hours of exposure was an increase in the expression of GPER1 and pERK-1/-2 in the group treated with G15 antagonist for 12 hours and levels of these proteins were similar in all groups. These data lead us to believe that active GPER1 MBP to route in a short period of time preferably increasing the phosphorylation of ERK1-/-2. After the rapid activation of GPER1 by MBP and inhibition by G15 (45 minutes), it seems that establishes a period in which the cells had the pathway inhibited GPER1 (G15) and partially inhibited (M+G) and ceased to in this way phosphorylate ERK-1/-2 and AKT, considerably increases the expression of these phosphorylated proteins essential to activate cell survival pathways (3 hours). After 12 hours exposure, the expression of genes as GPER1, EGFR, AKT1, MAPK1 and MAPK3 is shown decreased in MBP group, which may indicate an attempt to rebalance the cellular levels of protein translated from those genes, which evidenced by western blot assays. Thus it is concluded that MBP, at the dose studied is able to activate the pathway of GPER1 for a short period of time, especially phosphorylating ERK-1/-2, including increasing the migration ability of these cells, which could, after over time, and multiple exposures, increase tumor progression; and that LNCaP cells are able, by cellular control mechanisms, to reduce the response to MBP over time in an attempt to restore the balance of cell survival pathways associated with GPER1. |
id |
UNSP_2ecd91b6d248ddc8154685f5250de632 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/140144 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanasCharacterization of the cellular effects of the mono-N-butyl phthalate (MBP) mediated by non-genomic estrogen pathway activated by GPR30 in human prostate tumor cellsMetabólitosEstrógenos - ReceptoresProteínas GDesreguladores EndócrinosPróstata - CâncerLinhagem (Genética)The mono-n-butyl phthalate (MBP) is the active metabolite of di-n-butyl phthalate (DBP), a plasticizer commonly used for industrial products, including medical devices, flexible plastics and cosmetics, has been described as an endocrine disruptor with estrogenic and anti-androgenic function, depending on the dose and the exposure period, particularly by interfering with the development of the male reproductive system. It is believed that some of the effects of endocrine disruptors are mediated by the non-classical estrogen G protein-coupled receptor - GPER1 (GPR30). In view of the worldwide problems regarding to degradation of plastics and their dispersion in the environment, and earlier evidences showed that phthalates have effects on the development and maturation of the prostate increasing the incidence of inflammatory and dysplastic lesions in rodents, this study aimed to evaluate the effect of MBP on androgen dependent prostate cancer cells (LNCaP) by modulating the activity of GPER1 (through its antagonist, G15). The LNCaP cells, maintained in RPMI culture, were expanded and treated in an incubator with 5% CO2 humid atmosphere at 37 ° C. The MBP dose to be used was 10 uM, selected from the following MTT cytotoxicity test (3- [4.5-dimethylthiazol-2yl] -2,5-diphenyl tetrazolina bromide). Thus were established the following treatment protocols: control: RPMI + 0.03% DMSO; MBP: 10 uM of MBP diluted in DMSO (0.03%) + RPMI; G15: 8 uM of G15 diluted in DMSO (0.03%) + RPMI; M+G: 8 uM of G15 + 10 uM of MBP (diluted in 0.03% DMSO) + RPMI. For the treatment of MBP together with G15 (M+G), the GPER1 antagonist was added to the medium 30 minutes prior to MBP. Cells were incubated under the described treatments at four different times: 15 minutes 45 minutes, 3 hours and 12 hours. After exposure, the cells were processed for RNA and protein extraction, techniques designed to Reaction Polymerase Chain Real Time After reverse transcription (RT-qPCR) and Western blotting, respectively. At all times it was evaluated the profile of protein expression for GPER1, pErk1 / Erk2, PI3K and pAKT to the overall assessment of the activation process of pathways mediated by GPER1. After this step, and showing a rapid effect of MBP in GPER1 activation, we selected the 12-hour time to assess possible late effects of treatment on genes and related proteins via the GPER1 and other key pathways in tumor progression process. Using the same treatment protocol was performed an transwell migration assay by plating 1x105 cells into translucent inserts were subsequently assessed by fluorescence microscopy for the quantification of the cells that passed through the pores. The transwell cell migration assay showed that treatment with MBP was able to increase the migration of LNCaP cells, whereas the other treatments were similar to control. Initial data showed that the MBP was able to increase the expression of GPER1, pERK-1/-2 after 45 minutes of exposure, but did not alter the expression of PI3K and pAKT. After 3 hours of exposure was an increase in the expression of GPER1 and pERK-1/-2 in the group treated with G15 antagonist for 12 hours and levels of these proteins were similar in all groups. These data lead us to believe that active GPER1 MBP to route in a short period of time preferably increasing the phosphorylation of ERK1-/-2. After the rapid activation of GPER1 by MBP and inhibition by G15 (45 minutes), it seems that establishes a period in which the cells had the pathway inhibited GPER1 (G15) and partially inhibited (M+G) and ceased to in this way phosphorylate ERK-1/-2 and AKT, considerably increases the expression of these phosphorylated proteins essential to activate cell survival pathways (3 hours). After 12 hours exposure, the expression of genes as GPER1, EGFR, AKT1, MAPK1 and MAPK3 is shown decreased in MBP group, which may indicate an attempt to rebalance the cellular levels of protein translated from those genes, which evidenced by western blot assays. Thus it is concluded that MBP, at the dose studied is able to activate the pathway of GPER1 for a short period of time, especially phosphorylating ERK-1/-2, including increasing the migration ability of these cells, which could, after over time, and multiple exposures, increase tumor progression; and that LNCaP cells are able, by cellular control mechanisms, to reduce the response to MBP over time in an attempt to restore the balance of cell survival pathways associated with GPER1.O mono-n-butil-ftalato (MBP), metabólito ativo do di-n-butil-ftalato (DBP), plastificante usualmente utilizado em produtos industrializados, incluindo dispositivos médicos, plásticos flexíveis e cosméticos, tem sido descrito como um desregulador endócrino com função estrogênica e anti-androgênica dependendo da dose e do período de exposição, interferindo principalmente com o desenvolvimento do sistema genital masculino. Acredita-se que os efeitos de alguns desreguladores endócrinos sejam mediados pelo receptor estrogênico não clássico acoplado à proteína G - GPER1 (GPR30). Tendo em vista a problemática mundial com relação à degradação dos materiais plásticos e sua dispersão no meio ambiente e diante de evidências que mostraram que os ftalatos exercem efeitos sobre o desenvolvimento e maturação da próstata aumentando a incidência de lesões inflamatórias e displásicas em roedores, este estudo teve por objetivo avaliar a ação do MBP sobre células cancerígenas prostáticas dependentes de andrógeno (LNCaP), modulando a atividade do GPER1 (através de seu antagonista, G15). As células da linhagem LNCaP, mantidas em meio de cultura RPMI, foram expandidas e tratadas em estufa com 5% de CO2 e atmosfera úmida a 37ºC. A dose de MBP a ser utilizada foi de 10 µM, selecionada após o teste de citotoxicidade do MTT (3-[4,5-dimetiltiazol-2yl]-2,5-difenil brometo de tetrazolina). Dessa forma foram constituídos os seguintes protocolos de tratamento: Controle: RPMI + DMSO 0,03%; MBP: 10 µM de MBP diluído em DMSO (0,03%) + RPMI; G15: 8 µM de G15 diluído em DMSO (0,03%) + RPMI; M+G: 8 µM de G15 + 10 µM de MBP (diluídos em DMSO 0,03%) + RPMI. Para o tratamento conjunto de MBP com G15 (M+G) o antagonista de GPER1 foi acrescentado ao meio 30 minutos antes do MBP. As células foram incubadas segundo os tratamentos descritos em quatro tempos diferentes: 15 minutos, 45 minutos, 3 horas e 12 horas. Após a exposição, seguiu-se o processamento das células para extração de RNA e proteínas, destinadas às técnicas de Reação em Cadeia da Polimerase em Tempo Real após Transcrição Reversa (RT-qPCR) e Western blot, respectivamente. Em todos os tempos foram avaliados o perfil da expressão proteica para GPER1, pErk1/Erk2, PI3K e pAKT para a avaliação global do processo de ativação das vias mediadas por GPER1. Após essa etapa, e evidenciando um efeito rápido do MBP na ativação de GPER1, selecionamos o tempo de 12 horas para avaliar as possíveis repercussões tardias dos tratamentos sobre genes e proteínas relacionadas a via do GPER1 e outras vias importantes no processo de progressão tumoral. Utilizando os mesmos protocolos de tratamento foi realizado o ensaio de migração transwell plaqueando 1x105 células em insertos translúcidos que foram posteriormente avaliados por microscopia de fluorescência para a quantificação das células que atravessaram os poros. O ensaio de migração celular transwell mostrou que o tratamento com o MBP foi capaz de aumentar a migração das células LNCaP, ao passo que os demais tratamentos foram semelhantes ao controle. Os dados iniciais mostraram que o MBP foi capaz de aumentar a expressão de GPER1, pERK1/2 após 45 minutos de exposição, mas não alterou a expressão de PI3K e pAKT. Após 3 horas de exposição houve um aumento na expressão de GPER1 e pERK1/2 no grupo tratado com o antagonista G15, e com 12 horas o nível dessas proteínas foi semelhante em todos os grupos. Esses dados nos levam a crer que o MBP ativa a via de GPER1 em um curto período de tempo aumentando preferencialmente a fosforilação de ERK1/2. Após a ativação rápida de GPER1 pelo MBP e inibição pelo G15 (45 minutos), parece que se estabelece um período em que as células que tiveram a via do GPER1 inibida (G15) e parcialmente inibida (M+G) e que, deixaram de fosforilar por essa via ERK1/2 e AKT, aumentam consideravelmente a expressão dessas proteínas fosforiladas para ativar vias essenciais de sobrevivência celular (3 horas). Após 12 horas de exposição, a expressão de genes como GPER1, EGFR, AKT1, MAPK1 e MAPK3 mostra-se diminuída no grupo MBP, o que pode sinalizar a tentativa de reequilíbrio dos níveis celulares das proteínas traduzidas a partir desses genes, o que se comprova pelos ensaios de western blot. Dessa forma conclui-se que o MBP, na dose estudada, é capaz de ativar a via do GPER1 por um curto período de tempo, principalmente fosforilando ERK1/2, inclusive aumentando a capacidade migratória dessas células, o que poderia ao longo do tempo e de exposições múltiplas aumentar a progressão tumoral; e que as células LNCaP por mecanismos de controle celular reduzem a resposta ao MBP ao longo do tempo, na tentativa de reequilibrar as vias de sobrevivência celular associadas ao GPER1.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2014/09191-6Universidade Estadual Paulista (Unesp)Scarano, Wellerson Rodrigo [UNESP]Universidade Estadual Paulista (Unesp)Peixoto, André Rebelo [UNESP]2016-06-30T14:43:57Z2016-06-30T14:43:57Z2016-03-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/14014400087035233004064080P33713732996827351porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2023-10-02T06:00:39Zoai:repositorio.unesp.br:11449/140144Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:41:59.399398Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas Characterization of the cellular effects of the mono-N-butyl phthalate (MBP) mediated by non-genomic estrogen pathway activated by GPR30 in human prostate tumor cells |
title |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas |
spellingShingle |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas Peixoto, André Rebelo [UNESP] Metabólitos Estrógenos - Receptores Proteínas G Desreguladores Endócrinos Próstata - Câncer Linhagem (Genética) |
title_short |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas |
title_full |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas |
title_fullStr |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas |
title_full_unstemmed |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas |
title_sort |
Caracterização dos efeitos celulares do Mono-N-butil-ftalato (MBP) mediados pela via estrogênica não-genômica ativada por GPER1 (GPR30) em células tumorais prostáticas humanas |
author |
Peixoto, André Rebelo [UNESP] |
author_facet |
Peixoto, André Rebelo [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Scarano, Wellerson Rodrigo [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Peixoto, André Rebelo [UNESP] |
dc.subject.por.fl_str_mv |
Metabólitos Estrógenos - Receptores Proteínas G Desreguladores Endócrinos Próstata - Câncer Linhagem (Genética) |
topic |
Metabólitos Estrógenos - Receptores Proteínas G Desreguladores Endócrinos Próstata - Câncer Linhagem (Genética) |
description |
The mono-n-butyl phthalate (MBP) is the active metabolite of di-n-butyl phthalate (DBP), a plasticizer commonly used for industrial products, including medical devices, flexible plastics and cosmetics, has been described as an endocrine disruptor with estrogenic and anti-androgenic function, depending on the dose and the exposure period, particularly by interfering with the development of the male reproductive system. It is believed that some of the effects of endocrine disruptors are mediated by the non-classical estrogen G protein-coupled receptor - GPER1 (GPR30). In view of the worldwide problems regarding to degradation of plastics and their dispersion in the environment, and earlier evidences showed that phthalates have effects on the development and maturation of the prostate increasing the incidence of inflammatory and dysplastic lesions in rodents, this study aimed to evaluate the effect of MBP on androgen dependent prostate cancer cells (LNCaP) by modulating the activity of GPER1 (through its antagonist, G15). The LNCaP cells, maintained in RPMI culture, were expanded and treated in an incubator with 5% CO2 humid atmosphere at 37 ° C. The MBP dose to be used was 10 uM, selected from the following MTT cytotoxicity test (3- [4.5-dimethylthiazol-2yl] -2,5-diphenyl tetrazolina bromide). Thus were established the following treatment protocols: control: RPMI + 0.03% DMSO; MBP: 10 uM of MBP diluted in DMSO (0.03%) + RPMI; G15: 8 uM of G15 diluted in DMSO (0.03%) + RPMI; M+G: 8 uM of G15 + 10 uM of MBP (diluted in 0.03% DMSO) + RPMI. For the treatment of MBP together with G15 (M+G), the GPER1 antagonist was added to the medium 30 minutes prior to MBP. Cells were incubated under the described treatments at four different times: 15 minutes 45 minutes, 3 hours and 12 hours. After exposure, the cells were processed for RNA and protein extraction, techniques designed to Reaction Polymerase Chain Real Time After reverse transcription (RT-qPCR) and Western blotting, respectively. At all times it was evaluated the profile of protein expression for GPER1, pErk1 / Erk2, PI3K and pAKT to the overall assessment of the activation process of pathways mediated by GPER1. After this step, and showing a rapid effect of MBP in GPER1 activation, we selected the 12-hour time to assess possible late effects of treatment on genes and related proteins via the GPER1 and other key pathways in tumor progression process. Using the same treatment protocol was performed an transwell migration assay by plating 1x105 cells into translucent inserts were subsequently assessed by fluorescence microscopy for the quantification of the cells that passed through the pores. The transwell cell migration assay showed that treatment with MBP was able to increase the migration of LNCaP cells, whereas the other treatments were similar to control. Initial data showed that the MBP was able to increase the expression of GPER1, pERK-1/-2 after 45 minutes of exposure, but did not alter the expression of PI3K and pAKT. After 3 hours of exposure was an increase in the expression of GPER1 and pERK-1/-2 in the group treated with G15 antagonist for 12 hours and levels of these proteins were similar in all groups. These data lead us to believe that active GPER1 MBP to route in a short period of time preferably increasing the phosphorylation of ERK1-/-2. After the rapid activation of GPER1 by MBP and inhibition by G15 (45 minutes), it seems that establishes a period in which the cells had the pathway inhibited GPER1 (G15) and partially inhibited (M+G) and ceased to in this way phosphorylate ERK-1/-2 and AKT, considerably increases the expression of these phosphorylated proteins essential to activate cell survival pathways (3 hours). After 12 hours exposure, the expression of genes as GPER1, EGFR, AKT1, MAPK1 and MAPK3 is shown decreased in MBP group, which may indicate an attempt to rebalance the cellular levels of protein translated from those genes, which evidenced by western blot assays. Thus it is concluded that MBP, at the dose studied is able to activate the pathway of GPER1 for a short period of time, especially phosphorylating ERK-1/-2, including increasing the migration ability of these cells, which could, after over time, and multiple exposures, increase tumor progression; and that LNCaP cells are able, by cellular control mechanisms, to reduce the response to MBP over time in an attempt to restore the balance of cell survival pathways associated with GPER1. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-30T14:43:57Z 2016-06-30T14:43:57Z 2016-03-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/140144 000870352 33004064080P3 3713732996827351 |
url |
http://hdl.handle.net/11449/140144 |
identifier_str_mv |
000870352 33004064080P3 3713732996827351 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128267728715776 |