Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM

Detalhes bibliográficos
Autor(a) principal: Rossi, Leonardo de Lellis
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/214316
Resumo: Cognitive architectures, as the CONAIM model (Conscious Attention-Based Integrated Model) (SIMõES, 2015; SIMõES; COLOMBINI; RIBEIRO, 2016; SIMOES; COLOMBINI; RIBEIRO, 2017; COLOMBINI; SIMõES; RIBEIRO, 2017), suggest that a way to obtain consciousness in machines is the use of several factors inspired by those present in the human cognitive system, such as memories, reasoning, planning, decision making, learning, motivation, and attention. However, implementing this type of system has shown to be complex, requiring computational tools with a high degree of specialization or implemented in very limited situations. A specialized platform for building cognitive architectures, CST (Cognitive Systems Toolkit), stands out in this scenario (GUDWIN et al., 2013; PARAENSE et al., 2016). It contains cognitive structures called codelets and memory objects, capable of supporting the modules provided in the CONAIM model, as well as their possible evolutions. Recent works of our research group implemented CONAIM and reinforcement learning (RL) modules with the CST (REGATTIERI; COLOMBINI, 2018; BERTO, 2020; BERTO et al., 2020a; BERTO et al., 2020b) with a single procedural learning mechanism that, without external modifications, demonstrates the incremental learning process in the first three sensorimotor substages in Jean Piaget’s Theory (PIAGET, 1952). The validation of the development and learning process of this system will be carried out through a collection of cognitive experiments that can be used to study the new model and its computational and cognitive impacts (BERTO, 2020). Thus, the present work seeks to extend this investigation by implementing the learner attentive-cognitive agent and its validation through some of the proposed cognitive experiments using mobile robots in simulated environments. The results obtained show the possibility of evaluating the learning level of a robot through incremental cognitive experiments.
id UNSP_2f49f7a990dc46833a2ea29017efc64e
oai_identifier_str oai:repositorio.unesp.br:11449/214316
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIMSensory-motor learning in cognitive robots using CST-CONAIM modelArtificial intelligenceCognitionAutomaçãoCogniçãoEngenharia elétricaInteligência artificialCognitive architectures, as the CONAIM model (Conscious Attention-Based Integrated Model) (SIMõES, 2015; SIMõES; COLOMBINI; RIBEIRO, 2016; SIMOES; COLOMBINI; RIBEIRO, 2017; COLOMBINI; SIMõES; RIBEIRO, 2017), suggest that a way to obtain consciousness in machines is the use of several factors inspired by those present in the human cognitive system, such as memories, reasoning, planning, decision making, learning, motivation, and attention. However, implementing this type of system has shown to be complex, requiring computational tools with a high degree of specialization or implemented in very limited situations. A specialized platform for building cognitive architectures, CST (Cognitive Systems Toolkit), stands out in this scenario (GUDWIN et al., 2013; PARAENSE et al., 2016). It contains cognitive structures called codelets and memory objects, capable of supporting the modules provided in the CONAIM model, as well as their possible evolutions. Recent works of our research group implemented CONAIM and reinforcement learning (RL) modules with the CST (REGATTIERI; COLOMBINI, 2018; BERTO, 2020; BERTO et al., 2020a; BERTO et al., 2020b) with a single procedural learning mechanism that, without external modifications, demonstrates the incremental learning process in the first three sensorimotor substages in Jean Piaget’s Theory (PIAGET, 1952). The validation of the development and learning process of this system will be carried out through a collection of cognitive experiments that can be used to study the new model and its computational and cognitive impacts (BERTO, 2020). Thus, the present work seeks to extend this investigation by implementing the learner attentive-cognitive agent and its validation through some of the proposed cognitive experiments using mobile robots in simulated environments. The results obtained show the possibility of evaluating the learning level of a robot through incremental cognitive experiments.Arquiteturas cognitivas computacionais, como o CONAIM (Conscious Attention-Based Integrated Model) (SIMÕES, 2015), sugerem que um caminho para a obtenção da consciência em máquinas seria o uso coordenado de diversos elementos inspirados naqueles presentes no sistema cognitivo humano, como memórias, raciocínio, planejamento, tomada de decisão, aprendizado, motivação e atenção. Contudo, a implementação desse tipo de sistema tem se mostrado complexa, demandando ferramentas computacionais com alto grau de especialização ou aplicáveis em situações muito limitadas. Uma plataforma especializada para a construção de arquiteturas cognitivas, o CST (Cognitive Systems Toolkit) (PARAENSE, 2016), tem se destacado nesse cenário. Nela estão disponíveis estruturas cognitivas elementares denominadas codelets e objetos de memória (memory objects), capazes de dar suporte à implementação dos módulos previstos no modelo CONAIM, bem como suas possíveis evoluções. Trabalhos realizados pelo grupo de pesquisa implementaram módulos atencionais do CONAIM e módulos de aprendizado por reforço (AR) com as ferramentas disponíveis no CST (BERTO, 2020; REGATTIERI, 2018) e delinearam uma série de experimentos cognitivos que podem contribuir para a investigação desse novo modelo e de seus impactos computacionais. O presente trabalho busca estender essa investigação através da implementação de um sistema cognitivo-atencional com um único mecanismo de aprendizado procedimental, baseado no processo incremental de aprendizado humano nos três primeiros subestágios sensório-motores da Teoria de Jean Piaget (PIAGET, 1952). A validação do processo de desenvolvimento e aprendizado deste sistema será efetuada através de experimentos cognitivos propostos por (BERTO, 2020), utilizando robôs móveis em ambiente simulado.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 16/18819-4Universidade Estadual Paulista (Unesp)Simões, Alexandre da Silva [UNESP]Colombini, Esther LunaUniversidade Estadual Paulista (Unesp)Rossi, Leonardo de Lellis2021-09-03T23:10:10Z2021-09-03T23:10:10Z2021-07-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/21431633004170002P2porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-06T14:38:27Zoai:repositorio.unesp.br:11449/214316Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T14:38:27Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
Sensory-motor learning in cognitive robots using CST-CONAIM model
title Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
spellingShingle Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
Rossi, Leonardo de Lellis
Artificial intelligence
Cognition
Automação
Cognição
Engenharia elétrica
Inteligência artificial
title_short Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
title_full Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
title_fullStr Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
title_full_unstemmed Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
title_sort Aprendizado sensório-motor em robôs cognitivos utilizando modelo CST-CONAIM
author Rossi, Leonardo de Lellis
author_facet Rossi, Leonardo de Lellis
author_role author
dc.contributor.none.fl_str_mv Simões, Alexandre da Silva [UNESP]
Colombini, Esther Luna
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rossi, Leonardo de Lellis
dc.subject.por.fl_str_mv Artificial intelligence
Cognition
Automação
Cognição
Engenharia elétrica
Inteligência artificial
topic Artificial intelligence
Cognition
Automação
Cognição
Engenharia elétrica
Inteligência artificial
description Cognitive architectures, as the CONAIM model (Conscious Attention-Based Integrated Model) (SIMõES, 2015; SIMõES; COLOMBINI; RIBEIRO, 2016; SIMOES; COLOMBINI; RIBEIRO, 2017; COLOMBINI; SIMõES; RIBEIRO, 2017), suggest that a way to obtain consciousness in machines is the use of several factors inspired by those present in the human cognitive system, such as memories, reasoning, planning, decision making, learning, motivation, and attention. However, implementing this type of system has shown to be complex, requiring computational tools with a high degree of specialization or implemented in very limited situations. A specialized platform for building cognitive architectures, CST (Cognitive Systems Toolkit), stands out in this scenario (GUDWIN et al., 2013; PARAENSE et al., 2016). It contains cognitive structures called codelets and memory objects, capable of supporting the modules provided in the CONAIM model, as well as their possible evolutions. Recent works of our research group implemented CONAIM and reinforcement learning (RL) modules with the CST (REGATTIERI; COLOMBINI, 2018; BERTO, 2020; BERTO et al., 2020a; BERTO et al., 2020b) with a single procedural learning mechanism that, without external modifications, demonstrates the incremental learning process in the first three sensorimotor substages in Jean Piaget’s Theory (PIAGET, 1952). The validation of the development and learning process of this system will be carried out through a collection of cognitive experiments that can be used to study the new model and its computational and cognitive impacts (BERTO, 2020). Thus, the present work seeks to extend this investigation by implementing the learner attentive-cognitive agent and its validation through some of the proposed cognitive experiments using mobile robots in simulated environments. The results obtained show the possibility of evaluating the learning level of a robot through incremental cognitive experiments.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-03T23:10:10Z
2021-09-03T23:10:10Z
2021-07-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/214316
33004170002P2
url http://hdl.handle.net/11449/214316
identifier_str_mv 33004170002P2
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128132012572672