Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations

Detalhes bibliográficos
Autor(a) principal: Ribeiro Bueno, Joao Gabriel
Data de Publicação: 2020
Outros Autores: Borelli, Guilherme, Ribeiro Correa, Thamy Livia, Fiamenghi, Mateus Bernabe, Jos, Juliana, Carvalho, Murilo de, Oliveira, Leandro Cristante de [UNESP], Pereira, Goncalo A. G., Santos, Leandro Vieira dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1186/s13068-020-01782-0
http://hdl.handle.net/11449/197237
Resumo: Background The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineeredSaccharomyces cerevisiaestrains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeastS. cerevisiaeis not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes. Results Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeastCandida sojaeas a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters. Conclusions Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast.
id UNSP_300b288b2bd2ad800a05f9a18db9c299
oai_identifier_str oai:repositorio.unesp.br:11449/197237
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrationsXyloseXylose transporterMajor facilitator superfamilySaccharomyces cerevisiaePentose metabolismIndustrial biotechnologyBackground The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineeredSaccharomyces cerevisiaestrains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeastS. cerevisiaeis not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes. Results Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeastCandida sojaeas a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters. Conclusions Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Serrapilheira InstituteBrazilian Ctr Res Energy & Mat CNPEM, Brazilian Biorenewable Natl Lab LNBR, BR-13083100 Campinas, SP, BrazilUniv Campinas UNICAMP, Inst Biol, Genet & Mol Biol Grad Program, Campinas, BrazilBrazilian Ctr Res Energy & Mat CNPEM, Brazilian Biosci Natl Lab LNBio, BR-13083970 Campinas, SP, BrazilBrazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, BrazilSao Paulo State Univ, UNESP, Dept Phys, Inst Biosci Humanities & Exact Sci, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilSao Paulo State Univ, UNESP, Dept Phys, Inst Biosci Humanities & Exact Sci, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilFAPESP: 2017/08519-6FAPESP: 2017/05078-9FAPESP: 2018/00888-5CNPq: 430291/2018-3CAPES: 001Serrapilheira Institute: Serra1708-16205BmcBrazilian Ctr Res Energy & Mat CNPEMUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Ribeiro Bueno, Joao GabrielBorelli, GuilhermeRibeiro Correa, Thamy LiviaFiamenghi, Mateus BernabeJos, JulianaCarvalho, Murilo deOliveira, Leandro Cristante de [UNESP]Pereira, Goncalo A. G.Santos, Leandro Vieira dos2020-12-10T20:10:31Z2020-12-10T20:10:31Z2020-08-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article20http://dx.doi.org/10.1186/s13068-020-01782-0Biotechnology For Biofuels. London: Bmc, v. 13, n. 1, 20 p., 2020.http://hdl.handle.net/11449/19723710.1186/s13068-020-01782-0WOS:000563521500001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiotechnology For Biofuelsinfo:eu-repo/semantics/openAccess2021-10-23T12:24:35Zoai:repositorio.unesp.br:11449/197237Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:48:21.719494Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
title Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
spellingShingle Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
Ribeiro Bueno, Joao Gabriel
Xylose
Xylose transporter
Major facilitator superfamily
Saccharomyces cerevisiae
Pentose metabolism
Industrial biotechnology
title_short Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
title_full Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
title_fullStr Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
title_full_unstemmed Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
title_sort Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations
author Ribeiro Bueno, Joao Gabriel
author_facet Ribeiro Bueno, Joao Gabriel
Borelli, Guilherme
Ribeiro Correa, Thamy Livia
Fiamenghi, Mateus Bernabe
Jos, Juliana
Carvalho, Murilo de
Oliveira, Leandro Cristante de [UNESP]
Pereira, Goncalo A. G.
Santos, Leandro Vieira dos
author_role author
author2 Borelli, Guilherme
Ribeiro Correa, Thamy Livia
Fiamenghi, Mateus Bernabe
Jos, Juliana
Carvalho, Murilo de
Oliveira, Leandro Cristante de [UNESP]
Pereira, Goncalo A. G.
Santos, Leandro Vieira dos
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Brazilian Ctr Res Energy & Mat CNPEM
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ribeiro Bueno, Joao Gabriel
Borelli, Guilherme
Ribeiro Correa, Thamy Livia
Fiamenghi, Mateus Bernabe
Jos, Juliana
Carvalho, Murilo de
Oliveira, Leandro Cristante de [UNESP]
Pereira, Goncalo A. G.
Santos, Leandro Vieira dos
dc.subject.por.fl_str_mv Xylose
Xylose transporter
Major facilitator superfamily
Saccharomyces cerevisiae
Pentose metabolism
Industrial biotechnology
topic Xylose
Xylose transporter
Major facilitator superfamily
Saccharomyces cerevisiae
Pentose metabolism
Industrial biotechnology
description Background The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineeredSaccharomyces cerevisiaestrains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeastS. cerevisiaeis not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes. Results Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeastCandida sojaeas a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters. Conclusions Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T20:10:31Z
2020-12-10T20:10:31Z
2020-08-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1186/s13068-020-01782-0
Biotechnology For Biofuels. London: Bmc, v. 13, n. 1, 20 p., 2020.
http://hdl.handle.net/11449/197237
10.1186/s13068-020-01782-0
WOS:000563521500001
url http://dx.doi.org/10.1186/s13068-020-01782-0
http://hdl.handle.net/11449/197237
identifier_str_mv Biotechnology For Biofuels. London: Bmc, v. 13, n. 1, 20 p., 2020.
10.1186/s13068-020-01782-0
WOS:000563521500001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biotechnology For Biofuels
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 20
dc.publisher.none.fl_str_mv Bmc
publisher.none.fl_str_mv Bmc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128278245933056