Robust damage detection in uncertain nonlinear systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/191200 |
Resumo: | Structural Health Monitoring (SHM) methodologies aim to develop techniques able to detect, localize, quantify and predict the progress of damages in civil, aerospatial and mechanical structures. In the hierarchical process, the damage detection is the first and most important step. Despite the existence of numerous methods of damage detection based on vibration signals, two main problems can complicate the application of classical approaches: the nonlinear phenomena and the uncertainties. This thesis demonstrates the importance of the use of a stochastic nonlinear model in the damage detection problem considering the intrinsically nonlinear behavior of mechanical structures and the measured data variation. A new stochastic version of the Volterra series combined with random Kautz functions is proposed to predict the behavior of nonlinear systems, considering the presence of uncertainties. The stochastic model proposed is used in the damage detection process based on hypothesis tests. Firstly, the method is applied in a simulated study assuming a random Duffing oscillator exposed to the presence of a breathing crack modeled as a bilinear oscillator. Then, an experimental application considering a nonlinear beam subjected to the presence of damage with linear characteristics (loss of mass in a bolted connection) is performed, with the direct comparison between the results obtained using a deterministic and a stochastic model. Finally, an experimental application considering a nonlinear beam subjected to the presence of nonlinear damage (a breathing crack) is carried out. In all the applications, the comparison between the use of linear and nonlinear models is held, revealing the better results obtained when one considers the nonlinearities in the analysis. Furthermore, although the reference stochastic model is always the same, the methodology to detect the damage changes from one application to another, showing the evolution of the proposed approach during the research. The method presented satisfactory results in all the conditions studied, representing an improvement in the damage detection area considering nonlinearities and uncertainties at the same time. |
id |
UNSP_31e6d39f0723581719a3d4182c31378e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/191200 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Robust damage detection in uncertain nonlinear systemsDetecção robusta de danos em sistemas não lineares incertosStochastic Volterra seriesUncertainty quantificationNonlinear systemsRobust damage detectionSéries de Volterra estocásticasQuantificação de incertezasSistemas não linearesDetecção robusta de danosStructural Health Monitoring (SHM) methodologies aim to develop techniques able to detect, localize, quantify and predict the progress of damages in civil, aerospatial and mechanical structures. In the hierarchical process, the damage detection is the first and most important step. Despite the existence of numerous methods of damage detection based on vibration signals, two main problems can complicate the application of classical approaches: the nonlinear phenomena and the uncertainties. This thesis demonstrates the importance of the use of a stochastic nonlinear model in the damage detection problem considering the intrinsically nonlinear behavior of mechanical structures and the measured data variation. A new stochastic version of the Volterra series combined with random Kautz functions is proposed to predict the behavior of nonlinear systems, considering the presence of uncertainties. The stochastic model proposed is used in the damage detection process based on hypothesis tests. Firstly, the method is applied in a simulated study assuming a random Duffing oscillator exposed to the presence of a breathing crack modeled as a bilinear oscillator. Then, an experimental application considering a nonlinear beam subjected to the presence of damage with linear characteristics (loss of mass in a bolted connection) is performed, with the direct comparison between the results obtained using a deterministic and a stochastic model. Finally, an experimental application considering a nonlinear beam subjected to the presence of nonlinear damage (a breathing crack) is carried out. In all the applications, the comparison between the use of linear and nonlinear models is held, revealing the better results obtained when one considers the nonlinearities in the analysis. Furthermore, although the reference stochastic model is always the same, the methodology to detect the damage changes from one application to another, showing the evolution of the proposed approach during the research. The method presented satisfactory results in all the conditions studied, representing an improvement in the damage detection area considering nonlinearities and uncertainties at the same time.As metodologias de Monitoramento da Integridade Estrutural (SHM) visam desenvolver técnicas capazes de detectar, localizar, quantificar e prever o progresso de danos em estruturas civis, aeroespaciais e mecânicas. Nesse processo hierárquico, a detecção de danos é o primeiro e mais importante passo. Apesar da existência de inúmeros métodos de detecção de danos baseados em sinais de vibração, dois problemas principais podem complicar a aplicação de abordagens clássicas: os fenômenos não lineares e as incertezas. Esta tese demonstra a importância do uso de um modelo não linear estocástico no problema de detecção de danos, considerando o comportamento intrinsecamente não linear de estruturas mecânicas e a variação dos dados medidos. Uma nova versão estocástica das séries de Volterra, combinada com funções aleatórias de Kautz, é proposta para prever o comportamento de sistemas não lineares, considerando a presença de incertezas. O modelo estocástico proposto é utilizado no processo de detecção de danos com base em testes de hipótese. Primeiramente, o método é aplicado em um estudo simulado, assumindo um oscilador Duffing aleatório exposto à presença de uma trinca respiratória modelada como um oscilador bilinear. Em seguida, uma aplicação experimental é realizada considerando uma viga não linear sujeita à presença de um dano com características lineares (perda de massa em uma conexão parafusada), com a comparação direta entre os resultados obtidos utilizando um modelo determinístico e um estocástico. Por fim, uma aplicação experimental considerando uma viga não linear sujeita à presença de um dano não linear (uma trinca respiratória) é realizada. Em todas as situações, a comparação entre o uso de modelos lineares e não lineares é mostrada, revelando os melhores resultados obtidos quando as não linearidades são consideradas. Além disso, embora o modelo estocástico de referência seja sempre o mesmo, a metodologia para detectar os danos muda de uma aplicação para outra, mostrando a evolução da abordagem proposta durante a pesquisa. O método apresentou resultados satisfatórios em todas as situações estudadas, representando uma melhoria na área de detecção de danos, considerando não linearidades e incertezas ao mesmo tempo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 17/24977-4FAPESP: 15/25676-2CAPES: 001Universidade Estadual Paulista (Unesp)Silva, Samuel da [UNESP]Universidade Estadual Paulista (Unesp)Villani, Luis Gustavo Giacon2019-12-11T14:14:30Z2019-12-11T14:14:30Z2019-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/19120000092790833004099082P2eng177537info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T18:39:28Zoai:repositorio.unesp.br:11449/191200Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:39:28Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Robust damage detection in uncertain nonlinear systems Detecção robusta de danos em sistemas não lineares incertos |
title |
Robust damage detection in uncertain nonlinear systems |
spellingShingle |
Robust damage detection in uncertain nonlinear systems Villani, Luis Gustavo Giacon Stochastic Volterra series Uncertainty quantification Nonlinear systems Robust damage detection Séries de Volterra estocásticas Quantificação de incertezas Sistemas não lineares Detecção robusta de danos |
title_short |
Robust damage detection in uncertain nonlinear systems |
title_full |
Robust damage detection in uncertain nonlinear systems |
title_fullStr |
Robust damage detection in uncertain nonlinear systems |
title_full_unstemmed |
Robust damage detection in uncertain nonlinear systems |
title_sort |
Robust damage detection in uncertain nonlinear systems |
author |
Villani, Luis Gustavo Giacon |
author_facet |
Villani, Luis Gustavo Giacon |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Samuel da [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Villani, Luis Gustavo Giacon |
dc.subject.por.fl_str_mv |
Stochastic Volterra series Uncertainty quantification Nonlinear systems Robust damage detection Séries de Volterra estocásticas Quantificação de incertezas Sistemas não lineares Detecção robusta de danos |
topic |
Stochastic Volterra series Uncertainty quantification Nonlinear systems Robust damage detection Séries de Volterra estocásticas Quantificação de incertezas Sistemas não lineares Detecção robusta de danos |
description |
Structural Health Monitoring (SHM) methodologies aim to develop techniques able to detect, localize, quantify and predict the progress of damages in civil, aerospatial and mechanical structures. In the hierarchical process, the damage detection is the first and most important step. Despite the existence of numerous methods of damage detection based on vibration signals, two main problems can complicate the application of classical approaches: the nonlinear phenomena and the uncertainties. This thesis demonstrates the importance of the use of a stochastic nonlinear model in the damage detection problem considering the intrinsically nonlinear behavior of mechanical structures and the measured data variation. A new stochastic version of the Volterra series combined with random Kautz functions is proposed to predict the behavior of nonlinear systems, considering the presence of uncertainties. The stochastic model proposed is used in the damage detection process based on hypothesis tests. Firstly, the method is applied in a simulated study assuming a random Duffing oscillator exposed to the presence of a breathing crack modeled as a bilinear oscillator. Then, an experimental application considering a nonlinear beam subjected to the presence of damage with linear characteristics (loss of mass in a bolted connection) is performed, with the direct comparison between the results obtained using a deterministic and a stochastic model. Finally, an experimental application considering a nonlinear beam subjected to the presence of nonlinear damage (a breathing crack) is carried out. In all the applications, the comparison between the use of linear and nonlinear models is held, revealing the better results obtained when one considers the nonlinearities in the analysis. Furthermore, although the reference stochastic model is always the same, the methodology to detect the damage changes from one application to another, showing the evolution of the proposed approach during the research. The method presented satisfactory results in all the conditions studied, representing an improvement in the damage detection area considering nonlinearities and uncertainties at the same time. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-11T14:14:30Z 2019-12-11T14:14:30Z 2019-12-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/191200 000927908 33004099082P2 |
url |
http://hdl.handle.net/11449/191200 |
identifier_str_mv |
000927908 33004099082P2 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
177537 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128130859139072 |