Robust damage detection in uncertain nonlinear systems

Detalhes bibliográficos
Autor(a) principal: Villani, Luis Gustavo Giacon
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/191200
Resumo: Structural Health Monitoring (SHM) methodologies aim to develop techniques able to detect, localize, quantify and predict the progress of damages in civil, aerospatial and mechanical structures. In the hierarchical process, the damage detection is the first and most important step. Despite the existence of numerous methods of damage detection based on vibration signals, two main problems can complicate the application of classical approaches: the nonlinear phenomena and the uncertainties. This thesis demonstrates the importance of the use of a stochastic nonlinear model in the damage detection problem considering the intrinsically nonlinear behavior of mechanical structures and the measured data variation. A new stochastic version of the Volterra series combined with random Kautz functions is proposed to predict the behavior of nonlinear systems, considering the presence of uncertainties. The stochastic model proposed is used in the damage detection process based on hypothesis tests. Firstly, the method is applied in a simulated study assuming a random Duffing oscillator exposed to the presence of a breathing crack modeled as a bilinear oscillator. Then, an experimental application considering a nonlinear beam subjected to the presence of damage with linear characteristics (loss of mass in a bolted connection) is performed, with the direct comparison between the results obtained using a deterministic and a stochastic model. Finally, an experimental application considering a nonlinear beam subjected to the presence of nonlinear damage (a breathing crack) is carried out. In all the applications, the comparison between the use of linear and nonlinear models is held, revealing the better results obtained when one considers the nonlinearities in the analysis. Furthermore, although the reference stochastic model is always the same, the methodology to detect the damage changes from one application to another, showing the evolution of the proposed approach during the research. The method presented satisfactory results in all the conditions studied, representing an improvement in the damage detection area considering nonlinearities and uncertainties at the same time.
id UNSP_31e6d39f0723581719a3d4182c31378e
oai_identifier_str oai:repositorio.unesp.br:11449/191200
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Robust damage detection in uncertain nonlinear systemsDetecção robusta de danos em sistemas não lineares incertosStochastic Volterra seriesUncertainty quantificationNonlinear systemsRobust damage detectionSéries de Volterra estocásticasQuantificação de incertezasSistemas não linearesDetecção robusta de danosStructural Health Monitoring (SHM) methodologies aim to develop techniques able to detect, localize, quantify and predict the progress of damages in civil, aerospatial and mechanical structures. In the hierarchical process, the damage detection is the first and most important step. Despite the existence of numerous methods of damage detection based on vibration signals, two main problems can complicate the application of classical approaches: the nonlinear phenomena and the uncertainties. This thesis demonstrates the importance of the use of a stochastic nonlinear model in the damage detection problem considering the intrinsically nonlinear behavior of mechanical structures and the measured data variation. A new stochastic version of the Volterra series combined with random Kautz functions is proposed to predict the behavior of nonlinear systems, considering the presence of uncertainties. The stochastic model proposed is used in the damage detection process based on hypothesis tests. Firstly, the method is applied in a simulated study assuming a random Duffing oscillator exposed to the presence of a breathing crack modeled as a bilinear oscillator. Then, an experimental application considering a nonlinear beam subjected to the presence of damage with linear characteristics (loss of mass in a bolted connection) is performed, with the direct comparison between the results obtained using a deterministic and a stochastic model. Finally, an experimental application considering a nonlinear beam subjected to the presence of nonlinear damage (a breathing crack) is carried out. In all the applications, the comparison between the use of linear and nonlinear models is held, revealing the better results obtained when one considers the nonlinearities in the analysis. Furthermore, although the reference stochastic model is always the same, the methodology to detect the damage changes from one application to another, showing the evolution of the proposed approach during the research. The method presented satisfactory results in all the conditions studied, representing an improvement in the damage detection area considering nonlinearities and uncertainties at the same time.As metodologias de Monitoramento da Integridade Estrutural (SHM) visam desenvolver técnicas capazes de detectar, localizar, quantificar e prever o progresso de danos em estruturas civis, aeroespaciais e mecânicas. Nesse processo hierárquico, a detecção de danos é o primeiro e mais importante passo. Apesar da existência de inúmeros métodos de detecção de danos baseados em sinais de vibração, dois problemas principais podem complicar a aplicação de abordagens clássicas: os fenômenos não lineares e as incertezas. Esta tese demonstra a importância do uso de um modelo não linear estocástico no problema de detecção de danos, considerando o comportamento intrinsecamente não linear de estruturas mecânicas e a variação dos dados medidos. Uma nova versão estocástica das séries de Volterra, combinada com funções aleatórias de Kautz, é proposta para prever o comportamento de sistemas não lineares, considerando a presença de incertezas. O modelo estocástico proposto é utilizado no processo de detecção de danos com base em testes de hipótese. Primeiramente, o método é aplicado em um estudo simulado, assumindo um oscilador Duffing aleatório exposto à presença de uma trinca respiratória modelada como um oscilador bilinear. Em seguida, uma aplicação experimental é realizada considerando uma viga não linear sujeita à presença de um dano com características lineares (perda de massa em uma conexão parafusada), com a comparação direta entre os resultados obtidos utilizando um modelo determinístico e um estocástico. Por fim, uma aplicação experimental considerando uma viga não linear sujeita à presença de um dano não linear (uma trinca respiratória) é realizada. Em todas as situações, a comparação entre o uso de modelos lineares e não lineares é mostrada, revelando os melhores resultados obtidos quando as não linearidades são consideradas. Além disso, embora o modelo estocástico de referência seja sempre o mesmo, a metodologia para detectar os danos muda de uma aplicação para outra, mostrando a evolução da abordagem proposta durante a pesquisa. O método apresentou resultados satisfatórios em todas as situações estudadas, representando uma melhoria na área de detecção de danos, considerando não linearidades e incertezas ao mesmo tempo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 17/24977-4FAPESP: 15/25676-2CAPES: 001Universidade Estadual Paulista (Unesp)Silva, Samuel da [UNESP]Universidade Estadual Paulista (Unesp)Villani, Luis Gustavo Giacon2019-12-11T14:14:30Z2019-12-11T14:14:30Z2019-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/19120000092790833004099082P2eng177537info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T18:39:28Zoai:repositorio.unesp.br:11449/191200Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:39:28Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Robust damage detection in uncertain nonlinear systems
Detecção robusta de danos em sistemas não lineares incertos
title Robust damage detection in uncertain nonlinear systems
spellingShingle Robust damage detection in uncertain nonlinear systems
Villani, Luis Gustavo Giacon
Stochastic Volterra series
Uncertainty quantification
Nonlinear systems
Robust damage detection
Séries de Volterra estocásticas
Quantificação de incertezas
Sistemas não lineares
Detecção robusta de danos
title_short Robust damage detection in uncertain nonlinear systems
title_full Robust damage detection in uncertain nonlinear systems
title_fullStr Robust damage detection in uncertain nonlinear systems
title_full_unstemmed Robust damage detection in uncertain nonlinear systems
title_sort Robust damage detection in uncertain nonlinear systems
author Villani, Luis Gustavo Giacon
author_facet Villani, Luis Gustavo Giacon
author_role author
dc.contributor.none.fl_str_mv Silva, Samuel da [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Villani, Luis Gustavo Giacon
dc.subject.por.fl_str_mv Stochastic Volterra series
Uncertainty quantification
Nonlinear systems
Robust damage detection
Séries de Volterra estocásticas
Quantificação de incertezas
Sistemas não lineares
Detecção robusta de danos
topic Stochastic Volterra series
Uncertainty quantification
Nonlinear systems
Robust damage detection
Séries de Volterra estocásticas
Quantificação de incertezas
Sistemas não lineares
Detecção robusta de danos
description Structural Health Monitoring (SHM) methodologies aim to develop techniques able to detect, localize, quantify and predict the progress of damages in civil, aerospatial and mechanical structures. In the hierarchical process, the damage detection is the first and most important step. Despite the existence of numerous methods of damage detection based on vibration signals, two main problems can complicate the application of classical approaches: the nonlinear phenomena and the uncertainties. This thesis demonstrates the importance of the use of a stochastic nonlinear model in the damage detection problem considering the intrinsically nonlinear behavior of mechanical structures and the measured data variation. A new stochastic version of the Volterra series combined with random Kautz functions is proposed to predict the behavior of nonlinear systems, considering the presence of uncertainties. The stochastic model proposed is used in the damage detection process based on hypothesis tests. Firstly, the method is applied in a simulated study assuming a random Duffing oscillator exposed to the presence of a breathing crack modeled as a bilinear oscillator. Then, an experimental application considering a nonlinear beam subjected to the presence of damage with linear characteristics (loss of mass in a bolted connection) is performed, with the direct comparison between the results obtained using a deterministic and a stochastic model. Finally, an experimental application considering a nonlinear beam subjected to the presence of nonlinear damage (a breathing crack) is carried out. In all the applications, the comparison between the use of linear and nonlinear models is held, revealing the better results obtained when one considers the nonlinearities in the analysis. Furthermore, although the reference stochastic model is always the same, the methodology to detect the damage changes from one application to another, showing the evolution of the proposed approach during the research. The method presented satisfactory results in all the conditions studied, representing an improvement in the damage detection area considering nonlinearities and uncertainties at the same time.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-11T14:14:30Z
2019-12-11T14:14:30Z
2019-12-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/191200
000927908
33004099082P2
url http://hdl.handle.net/11449/191200
identifier_str_mv 000927908
33004099082P2
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 177537
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128130859139072