Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1186/1471-2229-10-260 http://hdl.handle.net/11449/18011 |
Resumo: | Background: MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species.Results: In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots.Conclusions: Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms. |
id |
UNSP_3395428ef97317b0a7c4d4ead39c9205 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/18011 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcaneBackground: MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species.Results: In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots.Conclusions: Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)ESALQ USP, Ctr Biotecnol Agr CEBTEC, Escola Super Agr Luiz de Queiroz, Piracicaba, SP, BrazilUniv Estadual Campinas, CBMEG, Campinas, SP, BrazilUniv Estadual Campinas, Dept Biol Vegetal, Inst Biol, Campinas, SP, BrazilUniv Estadual Paulista UNESP, Dept Genet, Inst Biociencias, Botucatu, SP, BrazilUniv Estadual Paulista UNESP, Dept Genet, Inst Biociencias, Botucatu, SP, BrazilFAPESP: 07/58289-5CNPq: 474635/2008-2Biomed Central Ltd.Universidade de São Paulo (USP)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Zanca, Almir S.Vicentini, RenatoOrtiz-Morea, Fausto A.Del Bem, Luiz E. V.da Silva, Marcio J.Vincentz, MichelNogueira, Fabio Tebaldi Silveira [UNESP]2014-05-20T13:50:27Z2014-05-20T13:50:27Z2010-11-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13application/pdfhttp://dx.doi.org/10.1186/1471-2229-10-260Bmc Plant Biology. London: Biomed Central Ltd., v. 10, p. 13, 2010.1471-2229http://hdl.handle.net/11449/1801110.1186/1471-2229-10-260WOS:000285520000001WOS000285520000001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBmc Plant Biology3.9301,887info:eu-repo/semantics/openAccess2023-12-09T06:23:12Zoai:repositorio.unesp.br:11449/18011Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:52:13.488297Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane |
title |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane |
spellingShingle |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane Zanca, Almir S. |
title_short |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane |
title_full |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane |
title_fullStr |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane |
title_full_unstemmed |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane |
title_sort |
Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane |
author |
Zanca, Almir S. |
author_facet |
Zanca, Almir S. Vicentini, Renato Ortiz-Morea, Fausto A. Del Bem, Luiz E. V. da Silva, Marcio J. Vincentz, Michel Nogueira, Fabio Tebaldi Silveira [UNESP] |
author_role |
author |
author2 |
Vicentini, Renato Ortiz-Morea, Fausto A. Del Bem, Luiz E. V. da Silva, Marcio J. Vincentz, Michel Nogueira, Fabio Tebaldi Silveira [UNESP] |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Zanca, Almir S. Vicentini, Renato Ortiz-Morea, Fausto A. Del Bem, Luiz E. V. da Silva, Marcio J. Vincentz, Michel Nogueira, Fabio Tebaldi Silveira [UNESP] |
description |
Background: MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species.Results: In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots.Conclusions: Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11-24 2014-05-20T13:50:27Z 2014-05-20T13:50:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1186/1471-2229-10-260 Bmc Plant Biology. London: Biomed Central Ltd., v. 10, p. 13, 2010. 1471-2229 http://hdl.handle.net/11449/18011 10.1186/1471-2229-10-260 WOS:000285520000001 WOS000285520000001.pdf |
url |
http://dx.doi.org/10.1186/1471-2229-10-260 http://hdl.handle.net/11449/18011 |
identifier_str_mv |
Bmc Plant Biology. London: Biomed Central Ltd., v. 10, p. 13, 2010. 1471-2229 10.1186/1471-2229-10-260 WOS:000285520000001 WOS000285520000001.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bmc Plant Biology 3.930 1,887 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 application/pdf |
dc.publisher.none.fl_str_mv |
Biomed Central Ltd. |
publisher.none.fl_str_mv |
Biomed Central Ltd. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129132247121920 |