ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques

Detalhes bibliográficos
Autor(a) principal: los Rios, Martin de [UNESP]
Data de Publicação: 2021
Outros Autores: Martinez, Hector J., Coenda, Valeria, Muriel, Hernan, Ruiz, Andres N., Vega-Martinez, Cristian A., Cora, Sofia A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1093/mnras/staa3339
http://hdl.handle.net/11449/209871
Resumo: We present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, M-200 > 10(15)h(-1)M(circle dot), galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We select all galaxies with stellar mass M-star >= 10(8.5)h(-1)M(circle dot), as computed by the semi-analytic model of galaxy formation SAG, that are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance.
id UNSP_35fcea8771e132f3eb1ad626be129281
oai_identifier_str oai:repositorio.unesp.br:11449/209871
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniquesmethods: analyticalmethods: numericalgalaxies: clusters: generalgalaxies: kinematics and dynamicsWe present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, M-200 > 10(15)h(-1)M(circle dot), galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We select all galaxies with stellar mass M-star >= 10(8.5)h(-1)M(circle dot), as computed by the semi-analytic model of galaxy formation SAG, that are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance.Consejo Nacional de Investigaciones Cientificas y Tecnicas (CON-ICET), ArgentinaAgencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), ArgentinaSecretaria de Ciencia y Tecnologia, Universidad Nacional de Cordoba (SeCyT), ArgentinaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)ANPCyTSeCyTMax Planck SocietyConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT)Universidad Nacional de La Plata, ArgentinaGauss Centre for Supercomputing e.V.Partnership for Advanced Supercomputing in Europe (PRACE)Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilUNC, Inst Astron Teor & Expt CCT Cordoba, CONICET, Laprida 854,X5000BGR, Cordoba, ArgentinaUniv Nacl Cordoba, Observ Astron, Laprida 854,X5000BGR, Cordoba, ArgentinaUniv La Serena, Inst Invest Multidisciplinar Ciencia & Tecnol, Raul Bitran 1305, La Serena, ChileUniv La Serena, Dept Astron, Av Juan Cisternas 1200 Norte, La Serena, ChileUNLP, Observ Astron, CONICET, Inst Astrofis La Plata CCT La Plata, Paseo Bosque S-N,B1900FWA, La Plata, ArgentinaUniv Nacl La Plata, Observ Astron, Fac Ciencias Astronom & Geofis, Paseo Bosque S-N,B1900FWA, La Plata, ArgentinaUniv Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilConsejo Nacional de Investigaciones Cientificas y Tecnicas (CON-ICET), Argentina: PIP 11220130100365COANPCyT: PICT 2016-1975SeCyT: PID 33620180101077Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET): PIP-0387Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT): PICT-2018-3743Universidad Nacional de La Plata, Argentina: G11-150Oxford Univ PressUniversidade Estadual Paulista (Unesp)UNCUniv Nacl CordobaUniv La SerenaUNLPUniv Nacl La Platalos Rios, Martin de [UNESP]Martinez, Hector J.Coenda, ValeriaMuriel, HernanRuiz, Andres N.Vega-Martinez, Cristian A.Cora, Sofia A.2021-06-25T12:32:05Z2021-06-25T12:32:05Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1784-1794http://dx.doi.org/10.1093/mnras/staa3339Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 500, n. 2, p. 1784-1794, 2021.0035-8711http://hdl.handle.net/11449/20987110.1093/mnras/staa3339WOS:000605983000017Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices Of The Royal Astronomical Societyinfo:eu-repo/semantics/openAccess2021-10-23T19:50:05Zoai:repositorio.unesp.br:11449/209871Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:32:59.909756Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
title ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
spellingShingle ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
los Rios, Martin de [UNESP]
methods: analytical
methods: numerical
galaxies: clusters: general
galaxies: kinematics and dynamics
title_short ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
title_full ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
title_fullStr ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
title_full_unstemmed ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
title_sort ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
author los Rios, Martin de [UNESP]
author_facet los Rios, Martin de [UNESP]
Martinez, Hector J.
Coenda, Valeria
Muriel, Hernan
Ruiz, Andres N.
Vega-Martinez, Cristian A.
Cora, Sofia A.
author_role author
author2 Martinez, Hector J.
Coenda, Valeria
Muriel, Hernan
Ruiz, Andres N.
Vega-Martinez, Cristian A.
Cora, Sofia A.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
UNC
Univ Nacl Cordoba
Univ La Serena
UNLP
Univ Nacl La Plata
dc.contributor.author.fl_str_mv los Rios, Martin de [UNESP]
Martinez, Hector J.
Coenda, Valeria
Muriel, Hernan
Ruiz, Andres N.
Vega-Martinez, Cristian A.
Cora, Sofia A.
dc.subject.por.fl_str_mv methods: analytical
methods: numerical
galaxies: clusters: general
galaxies: kinematics and dynamics
topic methods: analytical
methods: numerical
galaxies: clusters: general
galaxies: kinematics and dynamics
description We present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, M-200 > 10(15)h(-1)M(circle dot), galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We select all galaxies with stellar mass M-star >= 10(8.5)h(-1)M(circle dot), as computed by the semi-analytic model of galaxy formation SAG, that are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T12:32:05Z
2021-06-25T12:32:05Z
2021-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1093/mnras/staa3339
Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 500, n. 2, p. 1784-1794, 2021.
0035-8711
http://hdl.handle.net/11449/209871
10.1093/mnras/staa3339
WOS:000605983000017
url http://dx.doi.org/10.1093/mnras/staa3339
http://hdl.handle.net/11449/209871
identifier_str_mv Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 500, n. 2, p. 1784-1794, 2021.
0035-8711
10.1093/mnras/staa3339
WOS:000605983000017
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Monthly Notices Of The Royal Astronomical Society
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1784-1794
dc.publisher.none.fl_str_mv Oxford Univ Press
publisher.none.fl_str_mv Oxford Univ Press
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129436220915712