ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1093/mnras/staa3339 http://hdl.handle.net/11449/209871 |
Resumo: | We present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, M-200 > 10(15)h(-1)M(circle dot), galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We select all galaxies with stellar mass M-star >= 10(8.5)h(-1)M(circle dot), as computed by the semi-analytic model of galaxy formation SAG, that are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance. |
id |
UNSP_35fcea8771e132f3eb1ad626be129281 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/209871 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniquesmethods: analyticalmethods: numericalgalaxies: clusters: generalgalaxies: kinematics and dynamicsWe present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, M-200 > 10(15)h(-1)M(circle dot), galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We select all galaxies with stellar mass M-star >= 10(8.5)h(-1)M(circle dot), as computed by the semi-analytic model of galaxy formation SAG, that are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance.Consejo Nacional de Investigaciones Cientificas y Tecnicas (CON-ICET), ArgentinaAgencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), ArgentinaSecretaria de Ciencia y Tecnologia, Universidad Nacional de Cordoba (SeCyT), ArgentinaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)ANPCyTSeCyTMax Planck SocietyConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT)Universidad Nacional de La Plata, ArgentinaGauss Centre for Supercomputing e.V.Partnership for Advanced Supercomputing in Europe (PRACE)Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilUNC, Inst Astron Teor & Expt CCT Cordoba, CONICET, Laprida 854,X5000BGR, Cordoba, ArgentinaUniv Nacl Cordoba, Observ Astron, Laprida 854,X5000BGR, Cordoba, ArgentinaUniv La Serena, Inst Invest Multidisciplinar Ciencia & Tecnol, Raul Bitran 1305, La Serena, ChileUniv La Serena, Dept Astron, Av Juan Cisternas 1200 Norte, La Serena, ChileUNLP, Observ Astron, CONICET, Inst Astrofis La Plata CCT La Plata, Paseo Bosque S-N,B1900FWA, La Plata, ArgentinaUniv Nacl La Plata, Observ Astron, Fac Ciencias Astronom & Geofis, Paseo Bosque S-N,B1900FWA, La Plata, ArgentinaUniv Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilConsejo Nacional de Investigaciones Cientificas y Tecnicas (CON-ICET), Argentina: PIP 11220130100365COANPCyT: PICT 2016-1975SeCyT: PID 33620180101077Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET): PIP-0387Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT): PICT-2018-3743Universidad Nacional de La Plata, Argentina: G11-150Oxford Univ PressUniversidade Estadual Paulista (Unesp)UNCUniv Nacl CordobaUniv La SerenaUNLPUniv Nacl La Platalos Rios, Martin de [UNESP]Martinez, Hector J.Coenda, ValeriaMuriel, HernanRuiz, Andres N.Vega-Martinez, Cristian A.Cora, Sofia A.2021-06-25T12:32:05Z2021-06-25T12:32:05Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1784-1794http://dx.doi.org/10.1093/mnras/staa3339Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 500, n. 2, p. 1784-1794, 2021.0035-8711http://hdl.handle.net/11449/20987110.1093/mnras/staa3339WOS:000605983000017Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices Of The Royal Astronomical Societyinfo:eu-repo/semantics/openAccess2021-10-23T19:50:05Zoai:repositorio.unesp.br:11449/209871Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:32:59.909756Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques |
title |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques |
spellingShingle |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques los Rios, Martin de [UNESP] methods: analytical methods: numerical galaxies: clusters: general galaxies: kinematics and dynamics |
title_short |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques |
title_full |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques |
title_fullStr |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques |
title_full_unstemmed |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques |
title_sort |
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques |
author |
los Rios, Martin de [UNESP] |
author_facet |
los Rios, Martin de [UNESP] Martinez, Hector J. Coenda, Valeria Muriel, Hernan Ruiz, Andres N. Vega-Martinez, Cristian A. Cora, Sofia A. |
author_role |
author |
author2 |
Martinez, Hector J. Coenda, Valeria Muriel, Hernan Ruiz, Andres N. Vega-Martinez, Cristian A. Cora, Sofia A. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) UNC Univ Nacl Cordoba Univ La Serena UNLP Univ Nacl La Plata |
dc.contributor.author.fl_str_mv |
los Rios, Martin de [UNESP] Martinez, Hector J. Coenda, Valeria Muriel, Hernan Ruiz, Andres N. Vega-Martinez, Cristian A. Cora, Sofia A. |
dc.subject.por.fl_str_mv |
methods: analytical methods: numerical galaxies: clusters: general galaxies: kinematics and dynamics |
topic |
methods: analytical methods: numerical galaxies: clusters: general galaxies: kinematics and dynamics |
description |
We present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, M-200 > 10(15)h(-1)M(circle dot), galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We select all galaxies with stellar mass M-star >= 10(8.5)h(-1)M(circle dot), as computed by the semi-analytic model of galaxy formation SAG, that are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T12:32:05Z 2021-06-25T12:32:05Z 2021-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1093/mnras/staa3339 Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 500, n. 2, p. 1784-1794, 2021. 0035-8711 http://hdl.handle.net/11449/209871 10.1093/mnras/staa3339 WOS:000605983000017 |
url |
http://dx.doi.org/10.1093/mnras/staa3339 http://hdl.handle.net/11449/209871 |
identifier_str_mv |
Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 500, n. 2, p. 1784-1794, 2021. 0035-8711 10.1093/mnras/staa3339 WOS:000605983000017 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Monthly Notices Of The Royal Astronomical Society |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1784-1794 |
dc.publisher.none.fl_str_mv |
Oxford Univ Press |
publisher.none.fl_str_mv |
Oxford Univ Press |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129436220915712 |