Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/239991 |
Resumo: | Remote Sensing technologies and Machine Learning methods rise as a potential combination to assemble new environmental monitoring applications. In this context, the presented work proposes a new method that exploits anomaly detection models applied to Remote Sensing imagery to identify the spatio-temporal changes over the Earth's surface. The potential of the introduced approach is shown in a study case concerning the analysis of the landscape changes using One-Class SVM and Isolation Forest methods in Landsat and Sentinel images for Brumadinho and Mariana regions, Brazil, after its re¬ cent dam collapses. |
id |
UNSP_3684bb450c2ae2361ed4880a9a871dfc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/239991 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regionsRemote Sensing technologies and Machine Learning methods rise as a potential combination to assemble new environmental monitoring applications. In this context, the presented work proposes a new method that exploits anomaly detection models applied to Remote Sensing imagery to identify the spatio-temporal changes over the Earth's surface. The potential of the introduced approach is shown in a study case concerning the analysis of the landscape changes using One-Class SVM and Isolation Forest methods in Landsat and Sentinel images for Brumadinho and Mariana regions, Brazil, after its re¬ cent dam collapses.Instituto de Ciência e Tecnologia (ICT) Universidade Estadual Paulista Jiílio de Mesquita Filho (UNESP)Instituto de Ciência e Tecnologia (ICT) Universidade Estadual Paulista Jiílio de Mesquita Filho (UNESP)Universidade Estadual Paulista (UNESP)Gino, Vinicius L.S. [UNESP]Negri, Rogerio G. [UNESP]Souza, Felipe N. [UNESP]2023-03-01T19:56:38Z2023-03-01T19:56:38Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject156-166Proceedings of the Brazilian Symposium on GeoInformatics, p. 156-166.2179-4847http://hdl.handle.net/11449/2399912-s2.0-85129411942Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the Brazilian Symposium on GeoInformaticsinfo:eu-repo/semantics/openAccess2023-03-01T19:56:38Zoai:repositorio.unesp.br:11449/239991Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462023-03-01T19:56:38Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions |
title |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions |
spellingShingle |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions Gino, Vinicius L.S. [UNESP] |
title_short |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions |
title_full |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions |
title_fullStr |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions |
title_full_unstemmed |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions |
title_sort |
Anomaly detection based method for spatio-temporal dynamics mapping in dam mining regions |
author |
Gino, Vinicius L.S. [UNESP] |
author_facet |
Gino, Vinicius L.S. [UNESP] Negri, Rogerio G. [UNESP] Souza, Felipe N. [UNESP] |
author_role |
author |
author2 |
Negri, Rogerio G. [UNESP] Souza, Felipe N. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Gino, Vinicius L.S. [UNESP] Negri, Rogerio G. [UNESP] Souza, Felipe N. [UNESP] |
description |
Remote Sensing technologies and Machine Learning methods rise as a potential combination to assemble new environmental monitoring applications. In this context, the presented work proposes a new method that exploits anomaly detection models applied to Remote Sensing imagery to identify the spatio-temporal changes over the Earth's surface. The potential of the introduced approach is shown in a study case concerning the analysis of the landscape changes using One-Class SVM and Isolation Forest methods in Landsat and Sentinel images for Brumadinho and Mariana regions, Brazil, after its re¬ cent dam collapses. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2023-03-01T19:56:38Z 2023-03-01T19:56:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Proceedings of the Brazilian Symposium on GeoInformatics, p. 156-166. 2179-4847 http://hdl.handle.net/11449/239991 2-s2.0-85129411942 |
identifier_str_mv |
Proceedings of the Brazilian Symposium on GeoInformatics, p. 156-166. 2179-4847 2-s2.0-85129411942 |
url |
http://hdl.handle.net/11449/239991 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the Brazilian Symposium on GeoInformatics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
156-166 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826304673114488832 |