Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock

Detalhes bibliográficos
Autor(a) principal: Nicholson, Melany Isabel Garcia [UNESP]
Data de Publicação: 2016
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/155539
http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdf
Resumo: Schrödinger's equation was a great advance in science at the time it was published, making it possible for quantum mechanics to develop and transform itself into a field of knowledge in which many researchers still work today. However, the Schrödinger method has its limitations, the most important one being the fact that is does not exactly resolve problems involving more than one electron. So, right after the publication of Erwin Schrödinger's work, another scientist, called Douglas R. Hartree, started working on a theoretical method in which he and another scientist called Vladimir Fock inserted approximations in a way as to allow the Schrödinger equation to be solved numerically. In the current work, the objective was to deepen and detail the Hartree-Fock method to then apply it to certain cases to see in which systems it would work and in which systems it would not, and then define the reasons for that behavior. In this way, the ionization energy and electron affinity were calculated for lithium, sodium and potassium, applying Koopmans' theorem to both of these situations. Calculations were also made to determine the bond distance for H2, N2 and O2, the ground state and dissociation energies for the H2 molecule and lastly, calculations were made to determine how the electrons distribute themselves in the N2 and O2 molecules, situation in which we tried to predict the fundamental state for these two molecules, with the possibilities being either singlet or triplet. We also studied, in a simplified way, the influence of different base sets for the ionization energy and electron affinity calculations, using the 6-31G and cc-pVTZ base sets. The results showed that the method worked well for the determination of the ionization energies for lithium, sodium and potassium, even though error cancelling occurs while the calculations are in process. In this manner, Koopmans' theorem can
id UNSP_37b66fdb578927328b6fd4477fd80991
oai_identifier_str oai:repositorio.unesp.br:11449/155539
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-FockHartree-Fock, Aproximação deCálculoAtomosMoleculasOrbitais atomicosMoleculesSchrödinger's equation was a great advance in science at the time it was published, making it possible for quantum mechanics to develop and transform itself into a field of knowledge in which many researchers still work today. However, the Schrödinger method has its limitations, the most important one being the fact that is does not exactly resolve problems involving more than one electron. So, right after the publication of Erwin Schrödinger's work, another scientist, called Douglas R. Hartree, started working on a theoretical method in which he and another scientist called Vladimir Fock inserted approximations in a way as to allow the Schrödinger equation to be solved numerically. In the current work, the objective was to deepen and detail the Hartree-Fock method to then apply it to certain cases to see in which systems it would work and in which systems it would not, and then define the reasons for that behavior. In this way, the ionization energy and electron affinity were calculated for lithium, sodium and potassium, applying Koopmans' theorem to both of these situations. Calculations were also made to determine the bond distance for H2, N2 and O2, the ground state and dissociation energies for the H2 molecule and lastly, calculations were made to determine how the electrons distribute themselves in the N2 and O2 molecules, situation in which we tried to predict the fundamental state for these two molecules, with the possibilities being either singlet or triplet. We also studied, in a simplified way, the influence of different base sets for the ionization energy and electron affinity calculations, using the 6-31G and cc-pVTZ base sets. The results showed that the method worked well for the determination of the ionization energies for lithium, sodium and potassium, even though error cancelling occurs while the calculations are in process. In this manner, Koopmans' theorem canA equação de Schrödinger foi um grande avanço para a ciência da época em que foi publicada, possibilitando que a mecânica quântica se desenvolvesse e se transformasse numa área do conhecimento na qual muitos pesquisadores ainda trabalham hoje em dia. No entanto, o método de Schrödinger possui suas limitações, sendo a principal delas, o fato de não resolver exatamente problemas que envolvem mais de um elétron. Assim, logo após a publicação do trabalho de Erwin Schrödinger, outro cientista, chamado Douglas R. Hartree, começou a trabalhar num método de cálculo no qual ele e posteriormente Vladimir Fock inseriram aproximações de formas que fosse possível resolver a equação de Schrödinger aproximadamente, ou seja, numericamente. Neste trabalho se objetivou aprofundar e detalhar o método de Hartree-Fock, além de aplicá-lo a certos casos para ver em quais sistemas este funciona bem e em quais este funciona mal e a razão por trás disso. Dessa forma calcularam-se as energias de ionização e afinidade eletrônica para os átomos de lítio, sódio e potássio, aplicando também o teorema de Koopmans nestes dois primeiros casos. Também se realizaram cálculos para determinar distâncias de ligação para o H2, N2 e O2, a energia do estado fundamental e dissociação da molécula de H2 e por último a energia e distribuição dos elétrons para as moléculas de N2 e O2, ao tentar-se prever quais seriam seus estados fundamentais, no caso, singleto ou tripleto. Estudou-se também, mesmo que simplificadamente, qual a influência da mudança da base de cálculo para as energias de ionização e afinidade eletrônica, sendo que as bases utilizadas foram a 6-31G e a cc-pVTZ. Os resultados obtidos mostraram que o modelo funciona bem para o cálculo da energia de ionização para os átomos de lítio, sódio e potássio, embora isso ocorra graças aos cancelamentos provocados. Nesse aspecto, o teorema de Koopmans pode ser aplicado...Universidade Estadual Paulista (Unesp)Feliciano, Gustavo Troiano [UNESP]Universidade Estadual Paulista (Unesp)Nicholson, Melany Isabel Garcia [UNESP]2018-08-30T18:22:07Z2018-08-30T18:22:07Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis60 f.application/pdfNICHOLSON, Melany Isabel Garcia. Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock. 2016. 60 f. Trabalho de conclusão de curso (bacharelado - Química) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Química, 2016.http://hdl.handle.net/11449/155539000885547http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdfAlephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2023-12-24T06:19:02Zoai:repositorio.unesp.br:11449/155539Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:10:48.961454Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
title Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
spellingShingle Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
Nicholson, Melany Isabel Garcia [UNESP]
Hartree-Fock, Aproximação de
Cálculo
Atomos
Moleculas
Orbitais atomicos
Molecules
title_short Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
title_full Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
title_fullStr Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
title_full_unstemmed Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
title_sort Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
author Nicholson, Melany Isabel Garcia [UNESP]
author_facet Nicholson, Melany Isabel Garcia [UNESP]
author_role author
dc.contributor.none.fl_str_mv Feliciano, Gustavo Troiano [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Nicholson, Melany Isabel Garcia [UNESP]
dc.subject.por.fl_str_mv Hartree-Fock, Aproximação de
Cálculo
Atomos
Moleculas
Orbitais atomicos
Molecules
topic Hartree-Fock, Aproximação de
Cálculo
Atomos
Moleculas
Orbitais atomicos
Molecules
description Schrödinger's equation was a great advance in science at the time it was published, making it possible for quantum mechanics to develop and transform itself into a field of knowledge in which many researchers still work today. However, the Schrödinger method has its limitations, the most important one being the fact that is does not exactly resolve problems involving more than one electron. So, right after the publication of Erwin Schrödinger's work, another scientist, called Douglas R. Hartree, started working on a theoretical method in which he and another scientist called Vladimir Fock inserted approximations in a way as to allow the Schrödinger equation to be solved numerically. In the current work, the objective was to deepen and detail the Hartree-Fock method to then apply it to certain cases to see in which systems it would work and in which systems it would not, and then define the reasons for that behavior. In this way, the ionization energy and electron affinity were calculated for lithium, sodium and potassium, applying Koopmans' theorem to both of these situations. Calculations were also made to determine the bond distance for H2, N2 and O2, the ground state and dissociation energies for the H2 molecule and lastly, calculations were made to determine how the electrons distribute themselves in the N2 and O2 molecules, situation in which we tried to predict the fundamental state for these two molecules, with the possibilities being either singlet or triplet. We also studied, in a simplified way, the influence of different base sets for the ionization energy and electron affinity calculations, using the 6-31G and cc-pVTZ base sets. The results showed that the method worked well for the determination of the ionization energies for lithium, sodium and potassium, even though error cancelling occurs while the calculations are in process. In this manner, Koopmans' theorem can
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-08-30T18:22:07Z
2018-08-30T18:22:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv NICHOLSON, Melany Isabel Garcia. Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock. 2016. 60 f. Trabalho de conclusão de curso (bacharelado - Química) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Química, 2016.
http://hdl.handle.net/11449/155539
000885547
http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdf
identifier_str_mv NICHOLSON, Melany Isabel Garcia. Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock. 2016. 60 f. Trabalho de conclusão de curso (bacharelado - Química) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Química, 2016.
000885547
url http://hdl.handle.net/11449/155539
http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdf
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 60 f.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129294751236096