Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/155539 http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdf |
Resumo: | Schrödinger's equation was a great advance in science at the time it was published, making it possible for quantum mechanics to develop and transform itself into a field of knowledge in which many researchers still work today. However, the Schrödinger method has its limitations, the most important one being the fact that is does not exactly resolve problems involving more than one electron. So, right after the publication of Erwin Schrödinger's work, another scientist, called Douglas R. Hartree, started working on a theoretical method in which he and another scientist called Vladimir Fock inserted approximations in a way as to allow the Schrödinger equation to be solved numerically. In the current work, the objective was to deepen and detail the Hartree-Fock method to then apply it to certain cases to see in which systems it would work and in which systems it would not, and then define the reasons for that behavior. In this way, the ionization energy and electron affinity were calculated for lithium, sodium and potassium, applying Koopmans' theorem to both of these situations. Calculations were also made to determine the bond distance for H2, N2 and O2, the ground state and dissociation energies for the H2 molecule and lastly, calculations were made to determine how the electrons distribute themselves in the N2 and O2 molecules, situation in which we tried to predict the fundamental state for these two molecules, with the possibilities being either singlet or triplet. We also studied, in a simplified way, the influence of different base sets for the ionization energy and electron affinity calculations, using the 6-31G and cc-pVTZ base sets. The results showed that the method worked well for the determination of the ionization energies for lithium, sodium and potassium, even though error cancelling occurs while the calculations are in process. In this manner, Koopmans' theorem can |
id |
UNSP_37b66fdb578927328b6fd4477fd80991 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/155539 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-FockHartree-Fock, Aproximação deCálculoAtomosMoleculasOrbitais atomicosMoleculesSchrödinger's equation was a great advance in science at the time it was published, making it possible for quantum mechanics to develop and transform itself into a field of knowledge in which many researchers still work today. However, the Schrödinger method has its limitations, the most important one being the fact that is does not exactly resolve problems involving more than one electron. So, right after the publication of Erwin Schrödinger's work, another scientist, called Douglas R. Hartree, started working on a theoretical method in which he and another scientist called Vladimir Fock inserted approximations in a way as to allow the Schrödinger equation to be solved numerically. In the current work, the objective was to deepen and detail the Hartree-Fock method to then apply it to certain cases to see in which systems it would work and in which systems it would not, and then define the reasons for that behavior. In this way, the ionization energy and electron affinity were calculated for lithium, sodium and potassium, applying Koopmans' theorem to both of these situations. Calculations were also made to determine the bond distance for H2, N2 and O2, the ground state and dissociation energies for the H2 molecule and lastly, calculations were made to determine how the electrons distribute themselves in the N2 and O2 molecules, situation in which we tried to predict the fundamental state for these two molecules, with the possibilities being either singlet or triplet. We also studied, in a simplified way, the influence of different base sets for the ionization energy and electron affinity calculations, using the 6-31G and cc-pVTZ base sets. The results showed that the method worked well for the determination of the ionization energies for lithium, sodium and potassium, even though error cancelling occurs while the calculations are in process. In this manner, Koopmans' theorem canA equação de Schrödinger foi um grande avanço para a ciência da época em que foi publicada, possibilitando que a mecânica quântica se desenvolvesse e se transformasse numa área do conhecimento na qual muitos pesquisadores ainda trabalham hoje em dia. No entanto, o método de Schrödinger possui suas limitações, sendo a principal delas, o fato de não resolver exatamente problemas que envolvem mais de um elétron. Assim, logo após a publicação do trabalho de Erwin Schrödinger, outro cientista, chamado Douglas R. Hartree, começou a trabalhar num método de cálculo no qual ele e posteriormente Vladimir Fock inseriram aproximações de formas que fosse possível resolver a equação de Schrödinger aproximadamente, ou seja, numericamente. Neste trabalho se objetivou aprofundar e detalhar o método de Hartree-Fock, além de aplicá-lo a certos casos para ver em quais sistemas este funciona bem e em quais este funciona mal e a razão por trás disso. Dessa forma calcularam-se as energias de ionização e afinidade eletrônica para os átomos de lítio, sódio e potássio, aplicando também o teorema de Koopmans nestes dois primeiros casos. Também se realizaram cálculos para determinar distâncias de ligação para o H2, N2 e O2, a energia do estado fundamental e dissociação da molécula de H2 e por último a energia e distribuição dos elétrons para as moléculas de N2 e O2, ao tentar-se prever quais seriam seus estados fundamentais, no caso, singleto ou tripleto. Estudou-se também, mesmo que simplificadamente, qual a influência da mudança da base de cálculo para as energias de ionização e afinidade eletrônica, sendo que as bases utilizadas foram a 6-31G e a cc-pVTZ. Os resultados obtidos mostraram que o modelo funciona bem para o cálculo da energia de ionização para os átomos de lítio, sódio e potássio, embora isso ocorra graças aos cancelamentos provocados. Nesse aspecto, o teorema de Koopmans pode ser aplicado...Universidade Estadual Paulista (Unesp)Feliciano, Gustavo Troiano [UNESP]Universidade Estadual Paulista (Unesp)Nicholson, Melany Isabel Garcia [UNESP]2018-08-30T18:22:07Z2018-08-30T18:22:07Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis60 f.application/pdfNICHOLSON, Melany Isabel Garcia. Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock. 2016. 60 f. Trabalho de conclusão de curso (bacharelado - Química) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Química, 2016.http://hdl.handle.net/11449/155539000885547http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdfAlephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2023-12-24T06:19:02Zoai:repositorio.unesp.br:11449/155539Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:10:48.961454Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock |
title |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock |
spellingShingle |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock Nicholson, Melany Isabel Garcia [UNESP] Hartree-Fock, Aproximação de Cálculo Atomos Moleculas Orbitais atomicos Molecules |
title_short |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock |
title_full |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock |
title_fullStr |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock |
title_full_unstemmed |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock |
title_sort |
Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock |
author |
Nicholson, Melany Isabel Garcia [UNESP] |
author_facet |
Nicholson, Melany Isabel Garcia [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Feliciano, Gustavo Troiano [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Nicholson, Melany Isabel Garcia [UNESP] |
dc.subject.por.fl_str_mv |
Hartree-Fock, Aproximação de Cálculo Atomos Moleculas Orbitais atomicos Molecules |
topic |
Hartree-Fock, Aproximação de Cálculo Atomos Moleculas Orbitais atomicos Molecules |
description |
Schrödinger's equation was a great advance in science at the time it was published, making it possible for quantum mechanics to develop and transform itself into a field of knowledge in which many researchers still work today. However, the Schrödinger method has its limitations, the most important one being the fact that is does not exactly resolve problems involving more than one electron. So, right after the publication of Erwin Schrödinger's work, another scientist, called Douglas R. Hartree, started working on a theoretical method in which he and another scientist called Vladimir Fock inserted approximations in a way as to allow the Schrödinger equation to be solved numerically. In the current work, the objective was to deepen and detail the Hartree-Fock method to then apply it to certain cases to see in which systems it would work and in which systems it would not, and then define the reasons for that behavior. In this way, the ionization energy and electron affinity were calculated for lithium, sodium and potassium, applying Koopmans' theorem to both of these situations. Calculations were also made to determine the bond distance for H2, N2 and O2, the ground state and dissociation energies for the H2 molecule and lastly, calculations were made to determine how the electrons distribute themselves in the N2 and O2 molecules, situation in which we tried to predict the fundamental state for these two molecules, with the possibilities being either singlet or triplet. We also studied, in a simplified way, the influence of different base sets for the ionization energy and electron affinity calculations, using the 6-31G and cc-pVTZ base sets. The results showed that the method worked well for the determination of the ionization energies for lithium, sodium and potassium, even though error cancelling occurs while the calculations are in process. In this manner, Koopmans' theorem can |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2018-08-30T18:22:07Z 2018-08-30T18:22:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
NICHOLSON, Melany Isabel Garcia. Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock. 2016. 60 f. Trabalho de conclusão de curso (bacharelado - Química) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Química, 2016. http://hdl.handle.net/11449/155539 000885547 http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdf |
identifier_str_mv |
NICHOLSON, Melany Isabel Garcia. Química computacional: um estudo multidisciplinar dentro das subáreas da química através do modelo de Hartree-Fock. 2016. 60 f. Trabalho de conclusão de curso (bacharelado - Química) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Química, 2016. 000885547 |
url |
http://hdl.handle.net/11449/155539 http://www.athena.biblioteca.unesp.br/exlibris/bd/capelo/2017-06-19/000885547.pdf |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
60 f. application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
Aleph reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129294751236096 |