Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis

Detalhes bibliográficos
Autor(a) principal: Mariano, Enzo B. [UNESP]
Data de Publicação: 2021
Outros Autores: Torres, Bruno G., de Almeida, Mariana Rodrigues, Ferraz, Diogo, Rebelatto, Daisy A.N., de Mello, João Carlos Soares
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TLA.2021.9451236
http://hdl.handle.net/11449/229635
Resumo: This study aims to evaluate comparatively the situation of the federal units and the Brazilian states in relation to the pandemic of new coronaviruses (COVID19) through the technique of Network Data Envelopment Analysis (Network DEA - NDEA). For the development of research, data were collected on the Ministry of Health website, for all regions that register cases of virus cases notified until April 27, 2020. The purpose of the analysis is to assess regional discrepancies in the country. The model consists of the following structure: three inputs (number of doctors, number of respirators and number of clinical beds), an intermediate variable (number of reported cases) and one output (number of deaths). The results indicated that the federative unit with the worst performance overall was Amazonas, while the worst capital was Manaus. With two-dimensional representation, managers can visualize better which locations have the worst performance and assess which locations require more assistance. Depending on the results, managers can develop regional action plans, which can take steps to prevent the collapse of the health system.
id UNSP_3881afba89d0278e7beb05583f59cb7e
oai_identifier_str oai:repositorio.unesp.br:11449/229635
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment AnalysisCOVID-19HealthcareNetwork data envelopment analysis (NDEA)Two-dimensional frontier representationThis study aims to evaluate comparatively the situation of the federal units and the Brazilian states in relation to the pandemic of new coronaviruses (COVID19) through the technique of Network Data Envelopment Analysis (Network DEA - NDEA). For the development of research, data were collected on the Ministry of Health website, for all regions that register cases of virus cases notified until April 27, 2020. The purpose of the analysis is to assess regional discrepancies in the country. The model consists of the following structure: three inputs (number of doctors, number of respirators and number of clinical beds), an intermediate variable (number of reported cases) and one output (number of deaths). The results indicated that the federative unit with the worst performance overall was Amazonas, while the worst capital was Manaus. With two-dimensional representation, managers can visualize better which locations have the worst performance and assess which locations require more assistance. Depending on the results, managers can develop regional action plans, which can take steps to prevent the collapse of the health system.Departamento de Engenharia de Produção (DEP) Universidade Estadual Paulista (UNESP), BauruUniversidade Federal Fluminense (UFF), NiteróiDepartamento de Engenharia de Produção (DEP) Universidade Federal do Rio Grande do Norte, NatalUniversidade Federal Rural da Amazônia (UFRA), ParauapebasEscola de Engenharia de São Carlos (EESC) Universidade de São Paulo, São CarlosDepartamento de Engenharia de Produção (TEP) Universidade Federal Fluminense (UFF), NiteróiDepartamento de Engenharia de Produção (DEP) Universidade Estadual Paulista (UNESP), BauruUniversidade Estadual Paulista (UNESP)Universidade Federal Fluminense (UFF)Universidade Federal do Rio Grande do NorteUniversidade Federal Rural da Amazônia (UFRA)Universidade de São Paulo (USP)Mariano, Enzo B. [UNESP]Torres, Bruno G.de Almeida, Mariana RodriguesFerraz, DiogoRebelatto, Daisy A.N.de Mello, João Carlos Soares2022-04-29T08:34:54Z2022-04-29T08:34:54Z2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article917-924http://dx.doi.org/10.1109/TLA.2021.9451236IEEE Latin America Transactions, v. 19, n. 6, p. 917-924, 2021.1548-0992http://hdl.handle.net/11449/22963510.1109/TLA.2021.94512362-s2.0-85116331180Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactionsinfo:eu-repo/semantics/openAccess2024-06-28T13:17:58Zoai:repositorio.unesp.br:11449/229635Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:17:44.942819Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
title Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
spellingShingle Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
Mariano, Enzo B. [UNESP]
COVID-19
Healthcare
Network data envelopment analysis (NDEA)
Two-dimensional frontier representation
title_short Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
title_full Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
title_fullStr Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
title_full_unstemmed Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
title_sort Brazilian states in the context of covid-19 pandemic: An Index Proposition using Network Data Envelopment Analysis
author Mariano, Enzo B. [UNESP]
author_facet Mariano, Enzo B. [UNESP]
Torres, Bruno G.
de Almeida, Mariana Rodrigues
Ferraz, Diogo
Rebelatto, Daisy A.N.
de Mello, João Carlos Soares
author_role author
author2 Torres, Bruno G.
de Almeida, Mariana Rodrigues
Ferraz, Diogo
Rebelatto, Daisy A.N.
de Mello, João Carlos Soares
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Federal Fluminense (UFF)
Universidade Federal do Rio Grande do Norte
Universidade Federal Rural da Amazônia (UFRA)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Mariano, Enzo B. [UNESP]
Torres, Bruno G.
de Almeida, Mariana Rodrigues
Ferraz, Diogo
Rebelatto, Daisy A.N.
de Mello, João Carlos Soares
dc.subject.por.fl_str_mv COVID-19
Healthcare
Network data envelopment analysis (NDEA)
Two-dimensional frontier representation
topic COVID-19
Healthcare
Network data envelopment analysis (NDEA)
Two-dimensional frontier representation
description This study aims to evaluate comparatively the situation of the federal units and the Brazilian states in relation to the pandemic of new coronaviruses (COVID19) through the technique of Network Data Envelopment Analysis (Network DEA - NDEA). For the development of research, data were collected on the Ministry of Health website, for all regions that register cases of virus cases notified until April 27, 2020. The purpose of the analysis is to assess regional discrepancies in the country. The model consists of the following structure: three inputs (number of doctors, number of respirators and number of clinical beds), an intermediate variable (number of reported cases) and one output (number of deaths). The results indicated that the federative unit with the worst performance overall was Amazonas, while the worst capital was Manaus. With two-dimensional representation, managers can visualize better which locations have the worst performance and assess which locations require more assistance. Depending on the results, managers can develop regional action plans, which can take steps to prevent the collapse of the health system.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-01
2022-04-29T08:34:54Z
2022-04-29T08:34:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TLA.2021.9451236
IEEE Latin America Transactions, v. 19, n. 6, p. 917-924, 2021.
1548-0992
http://hdl.handle.net/11449/229635
10.1109/TLA.2021.9451236
2-s2.0-85116331180
url http://dx.doi.org/10.1109/TLA.2021.9451236
http://hdl.handle.net/11449/229635
identifier_str_mv IEEE Latin America Transactions, v. 19, n. 6, p. 917-924, 2021.
1548-0992
10.1109/TLA.2021.9451236
2-s2.0-85116331180
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv IEEE Latin America Transactions
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 917-924
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128630425911296