Generalized Gottlieb and whitehead center groups of space forms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15 http://hdl.handle.net/11449/187135 |
Resumo: | We extend Oprea's result that the Gottlieb group G1(S2n+1/H) is ZH (the center of H) and show that for a map f: A → S2n+1/H, under some conditions on A, we have G1 f (S2n+1/H) = ZHf*(π1(A)), the centralizer of the image f*(π1(A)) in H. Then, we compute or estimate the groups Gm f (S2n+1/H) and Pm f (S2n+1/H) for certain m > 1. |
id |
UNSP_38b0929a9161c7a3cf4a1867ed7eced8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/187135 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Generalized Gottlieb and whitehead center groups of space formsClassifying spaceGottlieb groupHomology groupHomotopy groupMoore- Postnikov towerN-equivalenceProjective spaceSpace formWhitehead center groupWhitehead productWe extend Oprea's result that the Gottlieb group G1(S2n+1/H) is ZH (the center of H) and show that for a map f: A → S2n+1/H, under some conditions on A, we have G1 f (S2n+1/H) = ZHf*(π1(A)), the centralizer of the image f*(π1(A)) in H. Then, we compute or estimate the groups Gm f (S2n+1/H) and Pm f (S2n+1/H) for certain m > 1.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculty of Mathematics and Computer Science University of Warmia and Mazury, Słoneczna 54 StreetSão Paulo State University (Unesp) Institute of Geosciences and Exact Sciences, Av. 24A, 1515São Paulo State University (Unesp) Institute of Geosciences and Exact Sciences, Av. 24A, 1515CAPES: 88881.068125/2014-01University of Warmia and MazuryUniversidade Estadual Paulista (Unesp)Golasiński, Marekde Melo, Thiago [UNESP]2019-10-06T15:26:35Z2019-10-06T15:26:35Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article323-340http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15Homology, Homotopy and Applications, v. 21, n. 1, p. 323-340, 2019.1532-00811532-0073http://hdl.handle.net/11449/18713510.4310/HHA.2019.v21.n1.a152-s2.0-85057739414Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengHomology, Homotopy and Applicationsinfo:eu-repo/semantics/openAccess2021-10-22T21:10:08Zoai:repositorio.unesp.br:11449/187135Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:04:09.867971Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Generalized Gottlieb and whitehead center groups of space forms |
title |
Generalized Gottlieb and whitehead center groups of space forms |
spellingShingle |
Generalized Gottlieb and whitehead center groups of space forms Golasiński, Marek Classifying space Gottlieb group Homology group Homotopy group Moore- Postnikov tower N-equivalence Projective space Space form Whitehead center group Whitehead product |
title_short |
Generalized Gottlieb and whitehead center groups of space forms |
title_full |
Generalized Gottlieb and whitehead center groups of space forms |
title_fullStr |
Generalized Gottlieb and whitehead center groups of space forms |
title_full_unstemmed |
Generalized Gottlieb and whitehead center groups of space forms |
title_sort |
Generalized Gottlieb and whitehead center groups of space forms |
author |
Golasiński, Marek |
author_facet |
Golasiński, Marek de Melo, Thiago [UNESP] |
author_role |
author |
author2 |
de Melo, Thiago [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
University of Warmia and Mazury Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Golasiński, Marek de Melo, Thiago [UNESP] |
dc.subject.por.fl_str_mv |
Classifying space Gottlieb group Homology group Homotopy group Moore- Postnikov tower N-equivalence Projective space Space form Whitehead center group Whitehead product |
topic |
Classifying space Gottlieb group Homology group Homotopy group Moore- Postnikov tower N-equivalence Projective space Space form Whitehead center group Whitehead product |
description |
We extend Oprea's result that the Gottlieb group G1(S2n+1/H) is ZH (the center of H) and show that for a map f: A → S2n+1/H, under some conditions on A, we have G1 f (S2n+1/H) = ZHf*(π1(A)), the centralizer of the image f*(π1(A)) in H. Then, we compute or estimate the groups Gm f (S2n+1/H) and Pm f (S2n+1/H) for certain m > 1. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T15:26:35Z 2019-10-06T15:26:35Z 2019-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15 Homology, Homotopy and Applications, v. 21, n. 1, p. 323-340, 2019. 1532-0081 1532-0073 http://hdl.handle.net/11449/187135 10.4310/HHA.2019.v21.n1.a15 2-s2.0-85057739414 |
url |
http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15 http://hdl.handle.net/11449/187135 |
identifier_str_mv |
Homology, Homotopy and Applications, v. 21, n. 1, p. 323-340, 2019. 1532-0081 1532-0073 10.4310/HHA.2019.v21.n1.a15 2-s2.0-85057739414 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Homology, Homotopy and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
323-340 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129487217360896 |