Generalized Gottlieb and whitehead center groups of space forms

Detalhes bibliográficos
Autor(a) principal: Golasiński, Marek
Data de Publicação: 2019
Outros Autores: de Melo, Thiago [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15
http://hdl.handle.net/11449/187135
Resumo: We extend Oprea's result that the Gottlieb group G1(S2n+1/H) is ZH (the center of H) and show that for a map f: A → S2n+1/H, under some conditions on A, we have G1 f (S2n+1/H) = ZHf*(π1(A)), the centralizer of the image f*(π1(A)) in H. Then, we compute or estimate the groups Gm f (S2n+1/H) and Pm f (S2n+1/H) for certain m > 1.
id UNSP_38b0929a9161c7a3cf4a1867ed7eced8
oai_identifier_str oai:repositorio.unesp.br:11449/187135
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Generalized Gottlieb and whitehead center groups of space formsClassifying spaceGottlieb groupHomology groupHomotopy groupMoore- Postnikov towerN-equivalenceProjective spaceSpace formWhitehead center groupWhitehead productWe extend Oprea's result that the Gottlieb group G1(S2n+1/H) is ZH (the center of H) and show that for a map f: A → S2n+1/H, under some conditions on A, we have G1 f (S2n+1/H) = ZHf*(π1(A)), the centralizer of the image f*(π1(A)) in H. Then, we compute or estimate the groups Gm f (S2n+1/H) and Pm f (S2n+1/H) for certain m > 1.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculty of Mathematics and Computer Science University of Warmia and Mazury, Słoneczna 54 StreetSão Paulo State University (Unesp) Institute of Geosciences and Exact Sciences, Av. 24A, 1515São Paulo State University (Unesp) Institute of Geosciences and Exact Sciences, Av. 24A, 1515CAPES: 88881.068125/2014-01University of Warmia and MazuryUniversidade Estadual Paulista (Unesp)Golasiński, Marekde Melo, Thiago [UNESP]2019-10-06T15:26:35Z2019-10-06T15:26:35Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article323-340http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15Homology, Homotopy and Applications, v. 21, n. 1, p. 323-340, 2019.1532-00811532-0073http://hdl.handle.net/11449/18713510.4310/HHA.2019.v21.n1.a152-s2.0-85057739414Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengHomology, Homotopy and Applicationsinfo:eu-repo/semantics/openAccess2021-10-22T21:10:08Zoai:repositorio.unesp.br:11449/187135Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:04:09.867971Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Generalized Gottlieb and whitehead center groups of space forms
title Generalized Gottlieb and whitehead center groups of space forms
spellingShingle Generalized Gottlieb and whitehead center groups of space forms
Golasiński, Marek
Classifying space
Gottlieb group
Homology group
Homotopy group
Moore- Postnikov tower
N-equivalence
Projective space
Space form
Whitehead center group
Whitehead product
title_short Generalized Gottlieb and whitehead center groups of space forms
title_full Generalized Gottlieb and whitehead center groups of space forms
title_fullStr Generalized Gottlieb and whitehead center groups of space forms
title_full_unstemmed Generalized Gottlieb and whitehead center groups of space forms
title_sort Generalized Gottlieb and whitehead center groups of space forms
author Golasiński, Marek
author_facet Golasiński, Marek
de Melo, Thiago [UNESP]
author_role author
author2 de Melo, Thiago [UNESP]
author2_role author
dc.contributor.none.fl_str_mv University of Warmia and Mazury
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Golasiński, Marek
de Melo, Thiago [UNESP]
dc.subject.por.fl_str_mv Classifying space
Gottlieb group
Homology group
Homotopy group
Moore- Postnikov tower
N-equivalence
Projective space
Space form
Whitehead center group
Whitehead product
topic Classifying space
Gottlieb group
Homology group
Homotopy group
Moore- Postnikov tower
N-equivalence
Projective space
Space form
Whitehead center group
Whitehead product
description We extend Oprea's result that the Gottlieb group G1(S2n+1/H) is ZH (the center of H) and show that for a map f: A → S2n+1/H, under some conditions on A, we have G1 f (S2n+1/H) = ZHf*(π1(A)), the centralizer of the image f*(π1(A)) in H. Then, we compute or estimate the groups Gm f (S2n+1/H) and Pm f (S2n+1/H) for certain m > 1.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T15:26:35Z
2019-10-06T15:26:35Z
2019-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15
Homology, Homotopy and Applications, v. 21, n. 1, p. 323-340, 2019.
1532-0081
1532-0073
http://hdl.handle.net/11449/187135
10.4310/HHA.2019.v21.n1.a15
2-s2.0-85057739414
url http://dx.doi.org/10.4310/HHA.2019.v21.n1.a15
http://hdl.handle.net/11449/187135
identifier_str_mv Homology, Homotopy and Applications, v. 21, n. 1, p. 323-340, 2019.
1532-0081
1532-0073
10.4310/HHA.2019.v21.n1.a15
2-s2.0-85057739414
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Homology, Homotopy and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 323-340
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129487217360896